
1/2

July 30, 2021

Why doesn’t my asynchronous read operation complete
when I close the handle?

devblogs.microsoft.com/oldnewthing/20210730-00

Raymond Chen

A customer was using asynchronous I/O with an I/O completion port. At the time they

wanted to shut things down, they still had an outstanding asynchronous read. To get things

to clean up, they closed the file handle, expecting it to cause the Read File to complete and

fail with an error like ERROR_INVALID_HANDLE . But instead, what they found was that the

read operation remained outstanding, and nothing completed.

What’s going on?

What’s going on is that when you close the file handle, that decrements an internal reference

count on the underlying file object, and that internal reference count is not yet zero, so the

file is still open. And where did that extra reference count come from?

From the Read File operation itself!

In the kernel, one of the things that happens when you pass a handle from an application is

that the kernel validates the handle and obtains a reference-counted pointer to the

underlying kernel object, which temporarily bumps the object reference count by one. If you

close the handle, that drops it back down, but there is still the outstanding reference from the

I/O operation, and that outstanding reference won’t go away until the I/O operation

completes.

As a side note, closing the handle to an object while there is still outstanding work on that

object feels really sketchy to me. It’s getting dangerously close to “destroying an object while

simultaneously using it”.

What you need to do is cancel the I/O by calling a function like Cancel Io or Cancel Io Ex .

And in order to cancel the I/O, you need to proide a handle to the file whose I/O you want to

cancel.

Another reason not to close that handle yet.

https://devblogs.microsoft.com/oldnewthing/20210730-00/?p=105501

2/2

When you cancel the I/O, the I/O will complete with an error code saying that it was

cancelled. At that point, you can close the file handle and clean up.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

