
1/2

September 2, 2021

Adventures in application compatibility: The cost of
forgetting to specify a calling convention

devblogs.microsoft.com/oldnewthing/20210902-00

Raymond Chen

We saw last time that the Windows header files sometimes look at world through __stdcall-

colored glasses, and that causes problems when the header file fails to specify an explicit

calling convention.

The developers of one particular component made the mistake of omitting an explicit calling

convention for one of their callback function pointer types, but it didn’t cause any immediate

problems. Consumers who compiled with __cdecl as the default calling convention passed

a __cdecl function pointer, but things happened to work out okay.

However, people reported that after installing a sevicing update, some programs that used

that component started crashing. The reason is that the servicing update altered the code

generation, and now the misplaced stack pointer started causing problems.

What we have here is a confluence of multiple mistakes. The feature team authored their

header file incorrectly, failing to specify an explicit calling convention. This led to customers

consuming the header file incorrectly, and passing callback function pointers that used the

__cdecl calling convention instead of __stdcall .

Now the application compatibility adventure begins.

In addition to fixing the header files to be explicit about the calling convention (to prevent

the problem from spreading), the component has to be modified so that it can be used with

either calling convention.

https://devblogs.microsoft.com/oldnewthing/20210902-00/?p=105639
https://devblogs.microsoft.com/oldnewthing/20210901-00/?p=105632
https://devblogs.microsoft.com/oldnewthing/20040116-00/?p=41023

2/2

declspec(naked) declspec(noinline)
void CALLBACK
WrapCallbackWithESPFix(WIDGETFILTERPROC filter, int a, int b)
{
 __asm
 {
 mov edi, edi ; hotpatch stub
 push ebp ; establish stack frame
 mov ebp, esp

 push b
 push a
#if _CONTROL_FLOW_GUARD
 mov ecx, filter ; call target
 call [__guard_check_icall_fptr]
 call ecx
#else
 call filter ; make the call
#endif

 ; restore esp if the callee mismanaged it due to wrong calling convention
 mov esp, ebp
 pop ebp
 ret 12
 }
}

It so happens that this workaround didn’t hang around indefinitely. The component in

question has a very small audience, and in particular, only one of the clients was

encountering this problem. That customer made a fix for their program and deployed it via

their update channel. The workaround was removed a little less than a year later.

Bonus reading: Throwing garbage on the sidewalk: The sad history of the rundll32

program.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20110909-00/?p=9683
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

