
1/3

September 3, 2021

I declared my Windows Runtime method as accepting an
array by reference, but it always arrives empty

devblogs.microsoft.com/oldnewthing/20210903-00

Raymond Chen

A customer was writing a Windows Runtime component that took as one of its parameters an

array of strings.

namespace Contoso
{
 runtimeclass Widget
 {
 Widget();
 void SetMessages(ref String[] messages);
 }
}

They tried to pass an array of strings from C#:

 Widget widget = new Widget();
 string[] messages = new string[] { "testing", "is this thing on?" };
 widget.SetMessages(messages);

The class implementation was written in C++/WinRT, but they found that when their

implementation received the array, it consisted of null strings!

void Widget::SetMessages(array_view<hstring> messages)
{
 // Debugger says that messages.size() == 2, as expected
 // but all the elements are nullptr, not the original strings
}

The customer chased this all the way back to the ABI boundary. With a breakpoint at the

C++/WinRT ABI boundary glue code, they found that the array was empty as soon as it

arrived from C#:

 int32_t __stdcall SetMessages(uint32_t __messagesSize, void** messages)
noexcept final try

{

https://devblogs.microsoft.com/oldnewthing/20210903-00/?p=105644

2/3

 zero_abi<hstring>(messages, __messagesSize);
 typename D::abi_guard guard(this->shim());

 this->shim().SetMessages(array_view<hstring>(
 reinterpret_cast<hstring*>(messages),

 reinterpret_cast<hstring*>(messages) + __messagesSize));
 return 0;

 }
 catch (...) { return to_hresult(); }

At the breakpoint, which is right at the ABI boundary, the __messagesSize has the

expected value of 2, but the messages array holds two null pointers rather than the desired

strings.

What’s going on here? What’s the correct way to pass an array from C# to a Windows

Runtime component written in C++/WinRT? Am I missing something in my declaration of

the array parameter?

The problem isn’t that you’re missing something. The problem is that you have too much.

Take a closer look at the C++/WinRT auto-generated code. The first thing that happens at

the ABI boundary is zero_abi(messages, __messageSize) : It’s setting the incoming

array to zeros! So even if C# passed us an array filled with good strings, the first thing we do

is throw them away.

Something is seriously messed up here.

The problem is the ref keyword.

In MIDL3, the ref keyword on an array means that the array is allocated by the caller, but

filled by the method. It is for passing data out of a method, not into it.

Let’s take another look at our table of the various ways of passing C-style arrays across the

Windows Runtime ABI boundary, specifically the line for IDL:

 PassArray FillArray

ReceiveArray

Parameter
Return
value

IDL
void M(T[]
value);

void M(ref T[]
value);

void M(out T[]
value);

T[]
M();

PassArray is the case where the caller passes an array to the method. The method can read

the array but cannot modify it. Use this when the caller wants to provide information to the

method.

https://devblogs.microsoft.com/oldnewthing/20200205-00/?p=103398

3/3

FillArray is the case where the caller passes an array to the method. The method is expected

to produce exactly enough elements to fill the array, and when the method returns, the caller

uses those values. Use this when the caller wants to receive information of a known size.

ReceiveArray is the case where the method creates the array and returns it to the caller. Use

this when the caller wants to receive an array, but only the method knows how big the array

is going to be.

In the customer’s case, they want a PassArray, so the solution is to remove the ref

keyword and declare it as a plain array:

namespace Contoso
{
 runtimeclass Widget
 {
 Widget();
 void SetMessages(String[] messages);
 }
}

Bonus chatter: It’s rather unfortunate that the ref keyword doesn’t mean quite the same

thing in MIDL as it does in C#. In MIDL, ref means “Write to the caller-provided array.”

But in C#, ref means “The caller created an array for you, and you can choose to read from

it, write to it, or even replace it with another array object entirely.”

I suspect the choice of ref was constrained by the list of existing MIDL keywords, to avoid

breaking existing IDL files. Maybe they could have used set ? Would this have made sense?

 void SetMessages(set String[] messages);

Or maybe it would have been just as confusing. I don’t know.

No point second-guessing it now. What’s done is done.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

