
1/5

September 17, 2021

Adventures in application compatibility: The case of the
wild instruction pointer that, upon closer inspection,
might not be so wild after all

devblogs.microsoft.com/oldnewthing/20210917-00

Raymond Chen

Application compatibility testing as well as Windows Insiders discovered that Windows

began crashing randomly if you upgraded to a specific build and had a specific program

installed. Uninstalling that program stopped the crashes.

The crash dumps were spread out over a large number of processes unrelated to the program,

so it’s not that the program itself was crashing, but rather that the presence of the program

was causing other programs to start crashing. If you looked at the crash dumps, you found

that the instruction pointer was just hanging out in the middle of nowhere:

rax=00007ffc1f8d0dc0 rbx=0000000000000010 rcx=0000000e194fa970
rdx=0000000000000000 rsi=0000000e194fa728 rdi=0000000e194fa428
rip=00007ffd9d1c5f2c rsp=0000000e194fa3e8 rbp=0000000000000001
r8=0000011c610f6a30 r9=0000000e194fa150 r10=0000000e194fa760
r11=0000000e194fa9ec r12=0000000000000000 r13=00000000ffffffff
r14=0000000000000000 r15=0000000e194fa650
iopl=0 nv up ei pl nz na po nc
cs=0033 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00010204
00007ffd`9d1c5f2c ?? ???

There were some clues on the stack:

https://devblogs.microsoft.com/oldnewthing/20210917-00/?p=105704

2/5

0:008> dps @rsp
0000000e`194fa3e8 00007ffc`9d1c6219 ntdll!DestroyWidget+0x9
0000000e`194fa3f0 0000007c`a92fb098
0000000e`194fa3f8 00000000`00000000
0000000e`194fa400 0000000e`194fa4c8
0000000e`194fa408 0000011c`6382b440
0000000e`194fa410 00000000`00000246
0000000e`194fa418 00007ffc`763e3573 contoso+0x23573
0000000e`194fa420 0000011c`6102f690
0000000e`194fa428 00000000`00000000
0000000e`194fa430 0000011c`6382b460
0000000e`194fa438 00000000`00000000
0000000e`194fa440 00000000`00000000
0000000e`194fa448 0000000e`194fa4c8
0000000e`194fa450 00000000`00000000
0000000e`194fa458 00000000`00000000
0000000e`194fa460 00000000`00000000

According to the stack, the jump-into-space came from ntdll!DestroyWidget+0x9 , but if

you look at the code in ntdll!DestroyWidget+0x9 , there is no jump into space. It’s calling

into another nearby function.

ntdll!DestroyWidget:
00007ffc`9d1c6210 4883ec28 sub rsp,28h
00007ffc`9d1c6214 e813fdffff call ntdll!DestroyWidgetWorker
(00007ffc`9d1c5f2c)
00007ffc`9d1c6219 85c0 test eax,eax

Notice that the wild instruction pointer differs from the intended jump target by a single bit:

Intended 00007ffc`9d1c5f2c

Actual 00007ffd`9d1c5f2c

This is not a return address stored on the stack, so it’s not rogue memory corruption. The

jump target is not stored on the stack at all; it’s encoded directly in the instruction stream. So

we can rule out a use-after-free bug here.

Hey, it’s not much, but it’s good to be able to rule out stuff so you can focus on the stuff that

is still in play.

Another thought is that this was caused by overclocking. However, the reports were coming

from a large number of systems, and the crash was consistent, which is atypical of

overclocking, since overclocking crashes tends to be random.

https://devblogs.microsoft.com/oldnewthing/20050412-47/?p=35923

3/5

Could something in the code stream be triggering a CPU erratum that caused jump targets to

be miscalculated? Perhaps, but the close correlation with a specific program being installed

suggests that the problem is in the software, not the hardware.

Inspection of more crash dumps show that the error is not actually a single-bit error after all.

It’s an “off by 4GB” error.

Intended 00007ffc`9d1c5f2c 00007ff9`33605f2c

Actual 00007ffd`9d1c5f2c 00007ffa`33605f2c

XOR 00000001`00000000 00000003`00000000

Difference 00000001`00000000 00000001`00000000

There are different levels of crash dumps. Some time ago, I mentioned the triage dump,

which is an extremely lightweight dump file that captures only a little bit of stack

information, just enough to generate a stack trace but not much else. The dumps we’ve been

looking at here are “minidumps”, which contain more complete stack information. But now

it’s time to bring out the big guns: The full process dump.

Full process dumps are very large, so Windows Error Reporting doesn’t capture them most of

the time. But developers can specifically request that the next N crashes be captured as full

process dumps, and Windows Error Reporting will oblige.

Opening a full process crash dump shows something very telling: The code at

ntdll!DestroyWidget looks different:

0:008> u ntdll!DestroyWidget
ntdll!DestroyWidget:
00007ffc`9d1c6210 e96bab7082 jmp 00007ffc`1f8d0d80
00007ffc`9d1c6215 13fd adc edi,ebp
00007ffc`9d1c6217 ff ???
00007ffc`9d1c6218 ff85c0740bb8 inc dword ptr [rbp-47F48B40h]

The function has been detoured!

Okay, now we’re getting somewhere.

When the detour wants to call the original function, it needs to replicate the original

instructions that were overwritten and then jump to the first non-overwritten instruction.

This is made more complicated by the fact that the last overwritten instruction was a call

instruction. The replicant is rather messy but it boils down to

https://devblogs.microsoft.com/oldnewthing/20161104-00/?p=94645

4/5

 ; replicate the "sub rsp,28h"
 sub rsp,28h

 ; replicate the "call ntdll!DestroyWidgetWorker"
 mov rax,7FFD9D1C6219h
 push rax ; fake return address
 mov rax,7FFC9D1C5F2Ch
 jmp rax ; jump to ntdll!DestroyWidgetWorker

To replicate the call instruction, the detour pushes a fake return address and then jumps to

the start of the called function. This, of course, messes up the return address predictor since

the call and ret instructions no longer balance. Sorry for your system performance, but

hey, at least our program got its detour!¹

Upon looking at the replicated code, you may spot the error: They miscalculated the fake

return address.

What happened is that their detour generator incorrectly decoded the call instruction and

treated the 32-bit immediate as an unsigned 32-bit offset rather than a signed 32-bit offset.

The call to Destroy Widget Worker has a negative offset:

00007ffc`9d1c6214 e813fdffff call ntdll!DestroyWidgetWorker
(00007ffc`9d1c5f2c)
 ^^^^^^^^
^^^^^^^^^^^^^^^^^
 offset = 0xfffffd13 lower address than
caller

Their instruction decoder zero-extended the offset to a 64-bit value, resulting in a

miscalculated jump target that is 4GB too high:

 Correct Incorrect

Return address 00007ffc`9d1c6219 00007ffc`9d1c6219

Plus offset ffffffff`fffffd13 00000000`fffffd13

Equals target 00007ffc`9d1c5f2c 00007ffd`9d1c5f2c

My guess is that the instruction decoder was ported from a 32-bit decoder, and in 32-bit

code, it doesn’t matter whether you treat the offset as signed or unsigned because the sum is

truncated to a 32-bit value. But when doing 64-bit decoding, those upper 32 bits are

important, and failing to extend negative values correctly results in an off-by-4GB

calculation.

Even though this problem has always existed, it requires two triggers:

https://devblogs.microsoft.com/oldnewthing/20041216-00/?p=36973

5/5

The detoured function must have a call instruction within the first 5 bytes.

The destination of the call must be at a lower address than the caller.

The program’s detour code was lucky, but recently its luck ran out.

We contacted the vendor, who released a patch. The crashes started to abate, but they don’t

go away completely because not everybody is diligent about installing patches.

Bonus chatter: A reminder that Windows does not support detouring the operating system.

This program has wandered into unsupported territory. Not that their customers will know

or care.

¹ A version that preserves the return address predictor stack might go something like this:

 ; replicate the "sub rsp,28h"
 sub rsp,28h

 ; replicate the "call ntdll!DestroyWidgetWorker"
 call @F ; push a slot onto the return address predictor
@@: mov rax,7FFC9D1C6219h
 mov [rsp], rax ; change the return address to our fake one
 mov rax,7FFC9D1C5F2Ch
 jmp rax ; jump to ntdll!DestroyWidgetWorker

The ret from Destroy Widget Worker will be mispredicted, but at least all the remaining

return addresses will be predicted correctly.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

