
1/4

October 1, 2021

The subtleties of Create Stream On HGlobal, part 4: Non-
movable memory

devblogs.microsoft.com/oldnewthing/20211001-00

Raymond Chen

Last time, I noted that some people ignore the requirement that the memory block passed to

Create Stream On HGlobal be movable. What happens next?

The documentation is a bit of two minds on this. On the one hand, it says that the memory

must be movable. On the other hand, it also talks about how you need to be careful if the

memory is not movable (and how using movable memory is strongly recommended). I

suspect this ambivalence comes from a compatibility constraint: Although the function is

documented as requiring movable memory, in practice, people have provided fixed memory

and have relied upon particular implementation details that let them get away with it, so the

system has to let you continue to get away with it, at least to the extent that you got away with

it before.

So what happens if you ignore the admonitions and pass fixed memory anyway?

The underlying stream doesn’t realize that the memory block is fixed and continues operating

under the assumption that it is movable. It still dutifully locks and unlocks the memory block

around each access, even though locking and unlocking fixed memory has no effect.

The scariest change is when the underlying memory block needs to be reallocated, because

reallocation of a fixed block behaves very differently from reallocation of a movable block.

Reallocating a movable block will not change the memory handle, not even if the underlying

memory moves to a new address. If the underlying memory moves, that the next attempt to

lock the memory block returns the new address.

On the other hand, reallocating a fixed memory block does change the handle if the

underlying memory moves, because fixed memory blocks use the memory address as the

handle. This means that when a reallocation happens, the internal HGLOBAL  changes!

If you have multiple streams sharing the same HGLOBAL , but which aren’t clones of each

other, then the consequences of the HGLOBAL  changing address are quite dire. It means that

once one stream reallocates the HGLOBAL , all the other streams are left with a dangling

https://devblogs.microsoft.com/oldnewthing/20211001-00/?p=105748
https://devblogs.microsoft.com/oldnewthing/20210930-00/?p=105745


2/4

pointer, which means a use-after-free bug and a security hotfix soon thereafter.

As I noted, the solution here is not to create multiple streams from the same HGLOBAL , but

rather to create a single HGLOBAL -based stream from the HGLOBAL , and then clone that

stream. Clones of an HGLOBAL -based stream are aware of each other and can coordinate

their actions.

But wait, we’re not done yet.

Since reallocation changes the HGLOBAL , it means that if a reallocation occurs, then the

HGLOBAL  you passed when you created the stream got freed out from under you!

HGLOBAL hglob = GetInitialHGlobal(); 
IStream* stream; 
CreateStreamOnHGlobal(hglob, FALSE, &stream); 
WriteToStream(stream); // ← hglob may no longer be valid! 

If you’re sticking with the whole fDelete On Release = FALSE  thing, then you need to

check with the stream just before it is destructed, “Hey, so what’s the HGLOBAL  you’re

managing right now?” In other words, “If you were to be destructed right now, what

HGLOBAL  would you free?”

You need to ask this question immediately before the final Release  of the stream. Asking

any sooner risks the possibility that the stream resizes again after you asked, and the answer

you got is no longer valid.

The hard part is knowing exactly when to ask this question. It’s not like the stream lets you

know that it’s about to be destroyed. You have to keep your eye on the stream and make sure

it never lands in the hands of somebody who is going to extend its lifetime.

Personally, I would limit my use of fDelete On Release = FALSE  to the case of creating a

brand new empty stream, writing data into the stream (being careful not to give to anybody

who will extend the lifetime), and then extracting the HGLOBAL  from it.

And even that is pretty risky. I would probably use an alternate approach of leaving

fDelete On Release = TRUE  and letting the stream itself control the lifetime of the

HGLOBAL :



3/4

// Non-RAII version to make everything explicit. 
IStream* stream = nullptr; 

if (SUCCEEDED( 
   CreateStreamOnHGlobal(nullptr, TRUE, &stream))) { 

   WriteStuffToStream(stream); 

   // Lifetime of the HGLOBAL is controlled by the stream. 
   HGLOBAL hglob = nullptr; 
   if (SUCCEEDED(GetHGlobalFromStream(stream, &hglob))) { 
       DoStuffWith(hglob); 
   } 

   // This Release call frees the HGLOBAL 
   stream->Release(); 
} 

Bonus chatter: If I were sent back in time to make small design changes to Create ‐

Stream On HGlobal  with the benefit of hindsight, I think I would have done something like

this:

HRESULT CreateStreamOnHGlobal(HGLOBAL hGlobal, REFIID riid, void** ppv); 

Creating a stream always takes ownership of the hGlobal . This avoids the problem of an

object that intentionally leaks memory.

interface IStreamOnHGlobal : IUnknown 
{ 
   HRESULT DetachHGlobal(HGLOBAL* result); 
};

Instead of the Get HGlobal From Stream  function, we use this interface that can be queried

from the stream. Using an interface avoids undefined behavior if somebody calls Get ‐

HGlobal From Stream  with a stream that didn’t come from Create Stream On HGlobal . The

introduction of this interface explains why I changed the signature of Create Stream On ‐

HGlobal  to let you specify the output interface.

The interface method Detach HGlobal  behaves differently from Get HGlobal From Stream .

The method performs an ownership transfer, rather than sharing ownership. Once you

detach the HGLOBAL  from a stream, it cannot be put back, and any future stream operations

return an error (perhaps RO_E_CLOSED  from the future).

This avoids the problem of a stream that has had its HGLOBAL  freed out from under it: At no

point is ownership of the HGLOBAL  ever shared. It belongs clearly to somebody at all times.

If you want to access the HGLOBAL , you have to take ownership of it.

Raymond Chen

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing


4/4

Follow

 

 


