
1/3

October 11, 2021

Is there a way that my macro can detect that it’s running
in a C++ coroutine?

devblogs.microsoft.com/oldnewthing/20211011-00

Raymond Chen

Say you are writing a macro that wants to behave differently depending on whether it is

expanded inside a coroutine or not. Specifically, you want to expand to return in a regular

function, but co_return in a coroutine.

template<T>
T&& TraceValue(T&& v);

// NOTE: Just a sketch. A real macro would have to do more work,
// but we are focusing on the IF_IN_COROUTINE part.
#define TRACE_RETURN() \
 TraceExit(); IF_IN_COROUTINE(co_return, return)

#define TRACE_RETURN_VALUE(v) \
 IF_IN_COROUTINE(co_return TraceExitValue(v), return TraceExitValue(v))

bool TestSomething()
{
 TRACE_ENTER();
 TRACE_RETURN_VALUE(IsSomethingReady()); // want "return"
}

task<bool> TestSomethingAsync()
{
 TRACE_ENTER();
 TRACE_RETURN_VALUE(IsSomethingReady()); // want "co_return"
}

Is it possible to write the magic IF_IN_COROUTINE macro which expands either its first or

second parameter?

It’s not possible in general, because the decision as to whether a function body is a regular

function body or a coroutine function body depends on what is inside the body. Specifically,

if the body it contains any co_await or co_return statements, then it is a coroutine body.

Otherwise, it is a regular function body.

https://devblogs.microsoft.com/oldnewthing/20211011-00/?p=105784

2/3

Since the macro is expanded as part of the function body, the decision about whether it is a

coroutine or not hasn’t yet been made. In fact, the macro’s expansion might be the thing that

determines whether the function body is a coroutine!

In the second example above, the function body expands to something like this:

task<bool> TestSomethingAsync()
{
 TraceEnter(__func__, __FILE_, __LINE__);
#if in coroutine
 co_return TraceExitValue(IsSomethingReady());
#else
 return TraceExitValue(IsSomethingReady());
#endif
}

Whether this is a coroutine depends on what the macro chooses!

If the macro detects that this is a coroutine, then the body expands to co_return

TraceExitValue(...) , and it is that co_return that makes the function body a

coroutine. But if the macro detects that it’s not a coroutine, then the body says return

TraceExitValue(...) , and since there is no co_return or co_await statement, the

function body is a regular function body.

You thought your macro was passively detecting whether it was in a coroutine, but in fact it is

actively controlling the decision!

Now, you might think, “Well, can I just base my decision on the function return type?”

Even if you could detect the return type from a macro (I’m not sure you can), that still

wouldn’t be good enough. The task<bool> might support construction from a bool , say

to represent an already-completed task, and therefore both co_return boolValue and

return boolValue are legal in the function body.

Basically, you are trying to be a passive predictor of a future that you inadvertently influence.

That doesn’t work well in science fiction, and it doesn’t work well here either.

Bonus paradox: Imagine writing the opposite macro:

#define TRACE_RETURN_VALUE(v) \
 IF_IN_COROUTINE(return TraceExitValue(v), co_return TraceExitValue(v))

This macro tries to be contrary and says, “Use return if I’m in a coroutine, but

co_return if I’m not.”

We could call this Russell’s macro since it creates a similar paradox:

https://en.wikipedia.org/wiki/Russell%27s_paradox

3/3

task<bool> TestSomethingAsync()
{
 TraceEnter(__func__, __FILE_, __LINE__);
#if in coroutine
 return TraceExitValue(IsSomethingReady());
#else
 co_return TraceExitValue(IsSomethingReady());
#endif
}

If the coroutine detector says, “This is a coroutine”, then the macro expands to return ,

which makes the function body not a coroutine. But if the coroutine detector says, “This is

not a coroutine”, then the macro expands to co_return , which makes the function body a

coroutine after all!

Proof by logical contradiction that a perfect coroutine-detector macro is impossible to write.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

