
1/4

October 13, 2021

Local variables are different from parameters in C++
coroutines

devblogs.microsoft.com/oldnewthing/20211013-00

Raymond Chen

In C++, you generally think of parameters and local variables as equivalent. A parameter

behaves like a conveniently-initialized local variable.¹

But not for coroutines.

Let’s look at one of the early steps of the coroutine transformation again:

return_type MyCoroutine(args...)
{
 create coroutine state
 copy parameters to coroutine frame
 promise_type p;
 return_type task = p.get_return_object();

 try {
 co_await p.initial_suspend();
 coroutine function body
 } catch (...) {
 p.unhandled_exception();
 }
 co_await p.final_suspend();
 destruct promise p
 destruct parameters in coroutine frame
 destroy coroutine state
}

Notice that local variables are destructed when we leave the scope of the coroutine function

body. In other words, the local variables destruct when we exit the try block.

On the other hand, the parameters are not destructed until the coroutine frame is destroyed.

Consider the following code:

https://devblogs.microsoft.com/oldnewthing/20211013-00/?p=105797
https://devblogs.microsoft.com/oldnewthing/20210331-00/?p=105028
https://devblogs.microsoft.com/oldnewthing/20210412-00/?p=105078

2/4

winrt::IAsyncActionWithProgress<int> LoadAsync(std::shared_ptr<S> s)
{
 /* do stuff */
 co_return;
}

winrt::fire_and_forget Example()
{
 auto temp = std::make_shared<S>();
 auto action = LoadAsync(temp);
 action.Progress(
 [](auto&& sender, auto progress) { /* report progress */ });
 co_await action;
 ProcessData(temp);
 temp = nullptr; // finished with S

 co_await RefreshAsync();
}

This code creates an S object and loads data into it via a coroutine. That coroutine uses

IAsync Action With Progress as its return type, and the Example function takes

advantage of that by listening for progress reports. It then co_await s the action to wait for

the Load Async coroutine to complete, while getting progress reports along the way.

After the action completes, it processes the data and then nulls out the temp local variable

to free the S object, since it’s not needed any more.

Finally, the function performs a refresh so it updates with the new processed data.

Do you see the error in the above analysis?

Since LoadAsync receives the std::shared_ptr<S> as a parameter, that parameter is

stored in the coroutine frame and is not destructed until the frame is destructed, which for

IAsyncAction doesn’t happen until the IAsyncAction is destructed.

In the above example, the IAsyncAction is stored into a local variable action , and that

local variable doesn’t destruct until the end of the Example coroutine. The S object is

being kept alive by the s parameter that was passed to the Load Async function, and that

is kept alive by the coroutine frame, and the coroutine frame is kept alive by the action

variable.

I discussed this issue from the point of view of the Load Async function some time ago. But

now we’re looking at it from the caller’s point of view.

As a caller of a coroutine, you should try to destruct the IAsyncAction as soon as you’re

finished with it. Usually, this is done by never assigning to anything; just leave it as a

compiler temporary, which destructs at the end of the statement.² If you do assign it to a

variable, you should null out the variable once you’ve finished using it:

https://devblogs.microsoft.com/oldnewthing/20210413-00/?p=105093

3/4

winrt::fire_and_forget Example()
{
 auto temp = std::make_shared<S>();
 auto action = LoadAsync(temp);
 action.Progress(
 [](auto&& sender, auto progress) { /* report progress */ });
 co_await action;
 action = nullptr;
 ProcessData(temp);
 temp = nullptr; // finished with S

 co_await RefreshAsync();
}

Or otherwise arrange for the reference to be released, say by scoping it:

winrt::fire_and_forget Example()
{
 auto temp = std::make_shared<S>();
 {
 auto action = LoadAsync(temp);
 action.Progress(
 [](auto&& sender, auto progress) { /* report progress */ });
 co_await action;
 } // destruct the action
 ProcessData(temp);
 temp = nullptr; // finished with S

 co_await RefreshAsync();
}

The nested scope presents a problem if the co_await returns a value, such as an IAsync ‐

Operation .

Another solution is to create a helper function to avoid having to store the action in a local

variable:

template<typename Async, typename Handler>
Async AttachProgress(Async sync, Handler&& handler)
{
 async.Progress(std::forward<Handler>(handler));
 return async;
}

Now you don’t have to name the object when attaching the progress handler, and the

prevents the lifetime from being extended. It also gives you a chance to capture the coroutine

result without having to worry about how to get the variable out of a nested scope.

4/4

winrt::fire_and_forget Example()
{
 auto temp = std::make_shared<S>();
 auto result = co_await AttachProgress(LoadAsync(temp),
 [](auto&& sender, auto progress) { /* report progress */ });
 ProcessData(temp);
 temp = nullptr; // finished with S

 co_await RefreshAsync();
}

Another way to solve this problem is on the coroutine side: Move the value out of the

parameter to a local variable. That way, it destructs with the locals, rather than hanging

around in the parameter space. (Well, technically it’s still in the parameter space, but you

made it relinquish control of its resources, so what’s left is empty.)

winrt::IAsyncActionWithProgress<int> LoadAsync(std::shared_ptr<S> s_param)
{
 auto s = std::move(s_param);

 /* do stuff */
 co_return;
}

Control of the S object has been moved out of the parameter by std::move ‘ing the

shared_ptr into the local.

If you wrote the coroutine, you can apply this principle, but if the coroutine was provided by

something outside your control, then you can’t be sure how expensive it is to keep an already-

completed coroutine around. Probably best to get rid of it as soon as possible.

¹ One difference is that parameters destruct in the context of the caller: If a parameter’s

destructor throws an exception, the exception is thrown from the caller and cannot be caught

by the called function. Mind you, throwing an exception from a destructor is a bad idea, so

this distinction is unlikely to be significant in practice.

² Formally, it destructs at the end of the full expression, which is smaller than a statement.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

