
1/2

October 14, 2021

Why does GetModuleInfo fail to produce an entry point
for executables?

devblogs.microsoft.com/oldnewthing/20211014-00

Raymond Chen

A customer wanted to find the entry point for some executables. They tried this two-step

plan:

Load the executable via LoadLibrary . Like, a real LoadLibrary , none of this “as

datafile” stuff.

Call Get Module Information and look at the MODULE INFO.Entry Point

The customer found that the result is always NULL . What’s going on?

First of all, it’s not clear what the purpose of the exercise is. You can’t call the entry point,

since it’s not the entry point for this process. And the entry point obtained from the current

process may not match the entry point when the process is actually run as a process.

Loading an executable as a library is a pretty dodgy operation. The module can be used to

load resources, but you can’t do much else with it. And if all you are after are the resources,

you may as well just load it as a datafile.

What you can do is manually walk the Portable Executable header (either by seeking and

reading or by using a memory-mapped file) to get the Address Of Entry Point , which is a

relative virtual address. You can then add that to the base address of the module (when it

eventually loads) to locate the entry point.

Okay, fine. But why does Get Module Information return NULL for executables?

Internally, Get Module Information walks the loader’s internal list of loaded modules and

returns the entry point from the loader entry for said module. If you load an executable via

Load Library , the entry point entry in the loader data structure will not be set.

The loader doesn’t record the entry point for executable modules because executable

modules don’t receive DLL_PROCESS_ATTACH notifications. The entry point for an

executable module is the process entry point, not the Dll Main function. (The loader also

https://devblogs.microsoft.com/oldnewthing/20211014-00/?p=105800

2/2

doesn’t record the entry point for CLR DLLs since that entry point is a dummy function that

crashes on purpose.)

Basically, the deal is that Get Module Information is in PSAPI.DLL , and PSAPI.DLL goes

“I’m in ur process steeling ur data”. Not only does the loader have no use for entry points of

EXEs and CLR DLLs, it explicitly must not call those entry points, so it sets the entry point to

null to mean “Don’t call this guy.” This is a private thing inside the loader. PSAPI.DLL goes

in and steals it and says “Hey check out all this good stuff I stole!” You’re basically getting

grey market data.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

