
1/9

October 20, 2021

My code crashed when I asked WIL to convert an
exception to an HRESULT, did I throw an improper
exception type?

devblogs.microsoft.com/oldnewthing/20211020-00

Raymond Chen

A customer used WRL to implement their COM objects, with the help of wil. Meanwhile, they

also had client code that instantiated one of those COM objects. An exception was thrown

and caught, but the code crashed trying to convert it to an HRESULT :

// Simplified
int __cdecl wmain()
{
 CoInitialize(nullptr);
 HRESULT result;
 try {
 auto widget = wil::CoCreateInstance<ContosoWidget,
 IContosoWidget>();
 result = widget->ReversePolarity();
 } catch (...) {
 result = wil::ResultFromCaughtException(); // crash here
 }

 if (SUCCEEDED(result)) {
 return 0;
 }

 DisplayErrorMessage(result);
 return 1;
}

The crash looked like this:

https://devblogs.microsoft.com/oldnewthing/20211020-00/?p=105815
https://docs.microsoft.com/en-us/cpp/cppcx/wrl/windows-runtime-cpp-template-library-wrl?view=msvc-160
https://github.com/microsoft/wil

2/9

ucrtbase!FindHandler<__FrameHandler4>+0x2d3:
00007ff9`c3ffec2f movsxd r13,dword ptr [rcx+0Ch]
 ds:00007ff9`abf00b94=????????

ucrtbase!FindHandler<__FrameHandler4>+0x2d3
ucrtbase!__InternalCxxFrameHandler<__FrameHandler4>+0x278
ucrtbase!__CxxFrameHandler4+0xa0
ntdll!RtlpExecuteHandlerForException+0xf
ntdll!RtlDispatchException+0x244
ntdll!RtlRaiseException+0x185
KERNELBASE!RaiseException+0x69
ucrtbase!_CxxThrowException+0xad
client!wil::details::ResultFromCaughtExceptionInternal+0xad
client!wil::ResultFromCaughtException+0x33
client!wmain$catch$6+0x12
ucrtbase!_CallSettingFrame_LookupContinuationIndex+0x20
ucrtbase!__FrameHandler4::CxxCallCatchBlock+0x10d
ntdll!RcFrameConsolidation+0x6
client!wmain+0x99
client!invoke_main+0x22
client!__scrt_common_main_seh+0x10c
kernel32!BaseThreadInitThunk+0x14
ntdll!RtlUserThreadStart+0x21

The default behavior of wil::Result From Caught Exception is to fail fast on an

unrecognized exception. But the above looks like a crash, not a fail-fast exception. Is that

what fail-fasts look like now? How can we dig out the exception type that went unrecognized?

The crash we see is not a fail-fast exception. What happened is that we crashed while trying

to decode the exception. We haven’t gotten to the point of rejecting it and failing fast; we

don’t yet know what it is!

Visual Studio comes with source code for the FindHandler function (in frame.cpp), so

we can use that to help us figure out where things blew up. In fact, all we need is the function

prototype:

template <class T>
static void FindHandler(
 EHExceptionRecord *pExcept, // Information for this (logical)
 // exception
 EHRegistrationNode *pRN, // ...
 CONTEXT *pContext, // Context info
 /* other parameters not interesting */
)

The valuable information is the pExcept , which tells us the exception we’re trying to

handle, and the pContext which tells us who threw it.

The Windows x86-64 calling convention passes the first parameter in rcx and the third

parameter in r8 , so those are the ones we need to track.

3/9

0:000> u .-2d3
ucrtbase!FindHandler<__FrameHandler4>
00007ff9`c3ffe95c push rbp
00007ff9`c3ffe95e push rbx
00007ff9`c3ffe95f push rsi
00007ff9`c3ffe960 push rdi
00007ff9`c3ffe961 push r12
00007ff9`c3ffe963 push r13
00007ff9`c3ffe965 push r14
00007ff9`c3ffe967 push r15
00007ff9`c3ffe969 lea rbp,[rsp-88h]
00007ff9`c3ffe971 sub rsp,188h
00007ff9`c3ffe978 mov rax,qword ptr [ucrtbase!__security_cookie
(00007ff9`c40af450)]
00007ff9`c3ffe97f xor rax,rsp
00007ff9`c3ffe982 mov qword ptr [rbp+70h],rax
00007ff9`c3ffe986 mov rax,qword ptr [rbp+108h]
00007ff9`c3ffe98d mov r12,rdx
00007ff9`c3ffe990 mov r14,qword ptr [rbp+0F0h]
00007ff9`c3ffe997 mov rbx,rcx // exception
00007ff9`c3ffe99a mov qword ptr [rbp-60h],rdx
00007ff9`c3ffe99e xor r13b,r13b
00007ff9`c3ffe9a1 mov rcx,r14
00007ff9`c3ffe9a4 mov qword ptr [rsp+70h],r8 // context
00007ff9`c3ffe9a9 mov rdx,r9
00007ff9`c3ffe9ac mov qword ptr [rbp-80h],rax
00007ff9`c3ffe9b0 mov rsi,r9

Okay, so the exception pointer is in rbx and the context pointer is on the stack at

rsp+70h .

0:000> .exr @rbx
ExceptionAddress: 00007ff9c3a64ed9 (KERNELBASE!RaiseException+0x0000000000000069)
 ExceptionCode: e06d7363 (C++ EH exception)
 ExceptionFlags: 00000001
NumberParameters: 4
 Parameter[0]: 0000000019930520
 Parameter[1]: 000000638477c910
 Parameter[2]: 00007ff9abf00b88
 Parameter[3]: 00007ff9abec0000
 pExceptionObject: 000000638477c910
 _s_ThrowInfo : 00007ff9abf00b88

The .exr command was kind enough to decode the parameters of the thrown C++

exception and give us the exception object. Let’s look at that exception object:

0:000> dps 000000638477c910
00000063`8477c910 00007ff9`abef3110 <Unloaded_contoso.dll>+0x33110
00000063`8477c918 00000000`00000000
00000063`8477c920 00000000`00000000
00000063`8477c928 80070005`00000000

4/9

Uh-oh.

What happened here is that contoso.dll threw an exception, and it escaped the module

and was caught by client!wmain . And as the stack unwound, at some point the DLL got

unloaded, so when client!wmain tried to inspect the object, it crashed trying to figure out

what it was.

The ucrtbase!FindHandler<__FrameHandler4> appears to be going through the same

exercise I described some time ago when I explained how to decode the parameters of a

thrown C++ exception. But it crashed before it could get to the type information.

Notice the value 0x80070005 , which corresponds to E_ACCESS_DENIED . There’s a good

chance that that is the exception being thrown.

We hope that the exception that was thrown was a WIL exception. (Remember, debugging is

an exercise in optimism.) Since client.dll also uses WIL, we can use client.dll

debugging information to parse the wil::Result Exception :

https://devblogs.microsoft.com/oldnewthing/20100730-00/?p=13273

5/9

0:000> dt client!wil::ResultException
 +0x000 __VFN_table : Ptr64
 +0x008 _Data : __std_exception_data
 +0x018 m_failure : wil::StoredFailureInfo
 +0x0b8 m_what : wil::details::shared_buffer
0:000> ?? ((client!wil::ResultException*)0x00000063`8477c910)
class wil::ResultException * 0x00000063`8477c910
 +0x000 __VFN_table : 0x00007ff9`abef3110
 +0x008 _Data : __std_exception_data
 +0x018 m_failure : wil::StoredFailureInfo
 +0x0b8 m_what : wil::details::shared_buffer
0:000> ?? ((client!wil::ResultException*)0x00000063`8477c910)->m_failure
class wil::StoredFailureInfo
 +0x000 m_failureInfo : wil::FailureInfo
 +0x090 m_spStrings : wil::details::shared_buffer
0:000> ?? ((client!wil::ResultException*)0x00000063`8477c910)-
>m_failure.m_failureInfo
struct wil::FailureInfo
 +0x000 type : 0 (Exception)
 +0x004 hr : 80070005
 +0x008 failureId : 0n1
 +0x010 pszMessage : (null)
 +0x018 threadId : 0x7d830
 +0x020 pszCode : (null)
 +0x028 pszFunction : (null)
 +0x030 pszFile : 0x000001d5`679582e4 "contoso\widget\connection.cpp"
 +0x038 uLineNumber : 44
 +0x03c cFailureCount : 0n1
 +0x040 pszCallContext : (null)
 +0x048 callContextOriginating : wil::CallContextInfo
 +0x060 callContextCurrent : wil::CallContextInfo
 +0x078 pszModule : 0x000001d5`67958314 "contoso.dll"
 +0x080 returnAddress : 0x00007ff9`abed698c Void
 +0x088 callerReturnAddress : 0x00007ff9`abed6654 Void

Things seem to line up pretty well. Line 44 of connection.cpp could indeed throw an

exception:

Connection::Connection()
{
 ...
 session = wil::CoCreateInstance<ContosoUserSession,
 IContosoUserSession>();
 ...
}

Let’s tell the debugger to load symbols for contoso.dll based on its last known address.

That will make those return addresses decodable.

6/9

0:000> !reload /unl contoso.dll

0:000> ln 0x00007ff9`abed698c
(00007ff9`abed6864) contoso!Microsoft::WRL::Details::
 MakeAndInitialize<ContosoWidget,IUnknown>+0x128

0:000> ln 0x00007ff9`abed6654
(00007ff9`abed6600) contoso!Microsoft::WRL::
 SimpleClassFactory<ContosoWidget,0>::CreateInstance+0x54

The exception was thrown from MakeAndInitialize , which strongly suggests that came

from the inlined constructor of ContosoWidget . The pContext will help us confirm this

theory. Recall that we learned that the context pointer is on the stack at rsp+70h .

7/9

0:000> .cxr poi(@rsp+70)
rax=00007ff9abef55c8 rbx=00007ff9abf00b88 rcx=000000638477c690
rdx=0000000700000020 rsi=000000638477f0e0 rdi=000000638477c910
rip=00007ff9c3a64ed9 rsp=000000638477c7a0 rbp=000000638477c8e0
r8=000001d567966d52 r9=0000000000000000 r10=000000638477c179
r11=0000000000000003 r12=0000000000000000 r13=0000000000000000
r14=000000000000002c r15=00007ff9abef6710
iopl=0 nv up ei pl nz na po nc
cs=0033 ss=002b ds=002b es=002b fs=0053 gs=002b
KERNELBASE!RaiseException+0x69:
00007ff9`c3a64ed9 0f1f440000 nop dword ptr [rax+rax]
0:000> k
 *** Stack trace for last set context - .thread/.cxr resets it
Child-SP Call Site
00000063`8477c7a0 KERNELBASE!RaiseException+0x69
00000063`8477c880 ucrtbase!_CxxThrowException+0xad
00000063`8477c8f0 contoso!wil::details::ThrowResultExceptionInternal+0x25
00000063`8477c9f0 contoso!wil::ThrowResultException+0x16
00000063`8477ca20 contoso!wil::details::ReportFailure+0x174
00000063`8477df90 contoso!wil::details::ReportFailure_Hr+0x44
00000063`8477dff0 contoso!wil::details::in1diag3::_Throw_Hr+0x26
(Inline Function) contoso!wil::details::in1diag3::Throw_IfFailed+0x6a
(Inline Function) contoso!Connection::{ctor}+0x98
00000063`8477e040
contoso!Microsoft::WRL::Details::MakeAndInitialize<ContosoWidget,IUnknown>+0x128
00000063`8477e0b0
contoso!Microsoft::WRL::SimpleClassFactory<ContosoWidget,0>::CreateInstance+0x54
00000063`8477e0f0 combase!CServerContextActivator::CreateInstance+0x1d4
00000063`8477e270 combase!ActivationPropertiesIn::DelegateCreateInstance+0x90
00000063`8477e300 combase!CApartmentActivator::CreateInstance+0x9c
00000063`8477e3b0 combase!CProcessActivator::CCICallback+0x58
00000063`8477e400 combase!CProcessActivator::AttemptActivation+0x40
00000063`8477e450 combase!CProcessActivator::ActivateByContext+0x91
00000063`8477e4e0 combase!CProcessActivator::CreateInstance+0x80
00000063`8477e530 combase!ActivationPropertiesIn::DelegateCreateInstance+0x90
00000063`8477e5c0 combase!CClientContextActivator::CreateInstance+0x17f
00000063`8477e870 combase!ActivationPropertiesIn::DelegateCreateInstance+0x90
00000063`8477e900 combase!ICoCreateInstanceEx+0x90a
00000063`8477f7f0 combase!CComActivator::DoCreateInstance+0x169
(Inline Function) combase!CoCreateInstanceEx+0xd1
00000063`8477f950 combase!CoCreateInstance+0x10c
00000063`8477f9f0
client!wil::CoCreateInstance<ContosoWidget,IContosoWidget,wil::err_exception_policy>+0

00000063`8477fa40 client!wmain+0x99
(Inline Function) client!invoke_main+0x22
00000063`8477fac0 client!__scrt_common_main_seh+0x10c
00000063`8477fb00 kernel32!BaseThreadInitThunk+0x14
00000063`8477fb30 ntdll!RtlUserThreadStart+0x21

8/9

This gives us a much better view of what’s going on. The ContosoWidget object has a

member variable that is a Connection , and construction of the Connection failed with an

exception. The exception propagated out of the constructor, which destructed the partially-

constructed ContosoWidget and then propagates the exception past Make And ‐

Initialize , the COM infrastructure, and was finally caught back in the client.

The WRL library operates at the COM ABI layer, which means that it generally requires that

nothing throws exceptions. (There are some places where it does support exceptions, but in

general it doesn’t.) You can see that it slaps throw() around all its COM methods, meaning

“These COM method don’t throw any exceptions (and I’m trusting you to honor that rule, no

enforcement).”

In this case, the exception escaped contoso.dll and unwound all the way across

combase.dll , which violates the rule against throwing exceptions across stack frames you

don’t control.

What seems to have happened is that as the exception propagated out of COM, COM realized

that something bad happened in contoso.dll . “Hey there buddy, you feeling okay? Do you

want to go home?” COM called contoso.dll ‘s Dll Can Unload Now function, and since

there were no active COM objects in contoso.dll , it said, “Yeah, I’m not needed here. You

can unload me.”

But there was an active object in contoso.dll : the exception object that it just threw!

COM unloaded contoso.dll so it could go home and get some rest. And then when

client!wmain caught the exception and tried to interrogate it, it crashed because the

exception source had already been unloaded.

The fix here is not to throw exceptions from constructors of COM objects that use WRL as

their factory, because the WRL factory is just going to wave good-bye to the exception as it

leaves the DLL. (It doesn’t have much choice, seeing as it has no way of interpreting the

exception andto convert it to an HRESULT .)

If you want to fail the creation of an object, you can do so by moving all the potentially-

failable things out of the constructor and into the Runtime Class Initialize method. You

can have that method return a failure HRESULT when it is not happy.

We went back to the code and found that in the time since this crash was identified,

somebody else had already fixed the bug by accident! The member variable type was changed

from Connection to std::unique_ptr<Connection> , and the Connection itself was

created on demand rather than in the constructor. The reason for the change was commented

as

 // Establish a connection on first use. This is done here instead of the
 // constructor so we can return a meaningful HRESULT to the caller.

https://devblogs.microsoft.com/oldnewthing/20180928-00/?p=99855
https://devblogs.microsoft.com/oldnewthing/20120910-00/?p=6653

9/9

Moving the failure out of the constructor also has the nice benefit of not crashing.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

