
1/6

October 27, 2021

Giving a single object multiple COM identities, part 2
devblogs.microsoft.com/oldnewthing/20211027-00

Raymond Chen

Last time, we looked at how you can give a single object multiple COM identities so that

different clients can maintain references to different parts of the object without knowing

about the other parts.

The idea here is that each identity is its own separate collection of IUnknown interfaces

which are interconnected via Query Interface to each other, but all of the identities share

the same AddRef and Release , so that the lifetime of the collective ends only when all the

identities run down.

Our previous implementation gave each embedded identity a pointer to the outer object so it

could access the shared AddRef and Release methods, as well as forward any calls to the

outer object for processing.

 primary vtable ◁

 reference count

 other data
 ⋮

CallbackWrapper embedded vtable

 m_outer

But it turns out that this pointer is redundant: Recovering the outer object from the

embedded object can be done from the embedded object’s this pointer because the

embedded object is at a fixed compile-time offset from the start of the outer object. All we

have to do is adjust the embedded object’s this pointer to get a pointer to the outer object.

https://devblogs.microsoft.com/oldnewthing/20211027-00/?p=105838
https://devblogs.microsoft.com/oldnewthing/20211026-00/?p=105834

2/6

ULONG CallbackWrapper::AddRef()
{
 Outer* outer = reinterpret_cast<Outer*>(
 reinterpret_cast<uintptr_t>(this) - offsetof(Outer, m_wrapper));
 return outer->AddRef();
}

One major problem is that the CallbackWrapper class doesn’t know what member name to

use as the second parameter to the offsetof macro. You could establish a convention that

“Oh, the name must be m_wrapper ,” but that would prevent you from having more than one

wrapper.

Even if you knew the name of the member variable, you can’t calculate the offset of a member

variable before the type is complete.

struct Widget final : IWidget, ...
{
 ...
 HRESULT OnCallback();
 CallbackWrapper<&Widget::OnCallback> m_wrapper;
 ...
};

At the point Callback Wrapper<;&Widget::OnCallback1> is instantiated, not only is the

Widget type incomplete, it doesn’t even have a member named m_wrapper yet!

But you know what you can do before a type is complete? You can static_cast between

the type and its base types. The compiler will do the work of calculating and applying the

pointer adjustment (once it is known).

So let’s try it:

ULONG CallbackWrapper::AddRef()
{
 Outer* outer = static_cast<Outer*>(this);
 return outer->AddRef();
}

struct Widget final : IWidget, CallbackWrapper<&Widget::OnCallback>
{
 ...
 HRESULT OnCallback();
 ...
};

This doesn’t work because we are now talking about Widget::OnCallback before it has

been declared. Unfortunately, you cannot forward-declare a member function, so we will

have to inject a helper forwarder class. To make it easier to find the ultimate target, we

remember it as the nested type name Outer .

3/6

template<typename OuterType>
struct MethodForwarder
{
 using Outer = OuterType;

 auto outer() { return static_cast<Outer*>(this); }

 HRESULT OnCallback() { return outer()->OnCallback(); }
};

struct Widget final : IWidget,
 CallbackWrapper<&MethodForwarder<Widget>::OnCallback>,
{
 ...
 HRESULT OnCallback();
 ...

 HRESULT RegisterCallback()
 {
 SetCallback(this);
 }
};

There is a unique conversion from Widget to ICallback (namely through the

CallbackWrapper), but if you need multiple callbacks, you’re in for a lot more typing to

resolve the ambiguous conversion:

4/6

template<typename Outer>
struct MethodForwarder
{
 auto outer() { return static_cast<Outer*>(this); }

 HRESULT OnCallback1() { return outer()->OnCallback1(); }
 HRESULT OnCallback2() { return outer()->OnCallback2(); }
};

struct Widget final : IWidget,
 CallbackWrapper<&MethodForwarder<Widget>::OnCallback1>,
 CallbackWrapper<&MethodForwarder<Widget>::OnCallback2>,
{
 ...
 HRESULT OnCallback1();
 HRESULT OnCallback2();
 ...

 HRESULT RegisterCallback()
 {

SetCallback1(static_cast<CallbackWrapper<&MethodForwarder<Widget>::OnCallback1>*>

(this));

SetCallback2(static_cast<CallbackWrapper<&MethodForwarder<Widget>::OnCallback2>*>

(this));
 }
};

We can do some things to help a little with the verbosity: We can create a type alias, a

variadic aggregator, and a helper function for casting to the correct base class:

5/6

template<auto... Callbacks>
struct CallbackWrappers : CallbackWrapper<Callbacks>...
{
 template<auto Callback>
 ICallback* GetCallback() {
 return static_cast<CallbackWrapper<Callback>*>(this);
 }
};

struct Widget;
using WidgetForwarder = MethodForwarder<Widget>;

struct Widget final : IWidget,
 CallbackWrappers<&WidgetForwarder::OnCallback1,
 &WidgetForwarder::OnCallback2>
{
 ...
 HRESULT OnCallback1();
 HRESULT OnCallback2();
 ...

 HRESULT RegisterCallback()
 {
 SetCallback1(GetCallback<&WidgetForwarder::OnCallback1>(this));
 SetCallback2(GetCallback<&WidgetForwarder::OnCallback2>(this));
 }
};

An alternative to using the method forwarder would be to split the Widget into two parts, one

that contains the bulk of the implementation and one that adds the callbacks.

struct WidgetImpl : IWidget
{
 ...
 HRESULT OnCallback1();
 HRESULT OnCallback2();
 ...
};

struct Widget final : WidgetImpl,
 CallbackWrappers<&WidgetImpl::OnCallback1,
 &WidgetImpl::OnCallback2>
{
};

This alternative version solves one problem but adds a new one: How does Widget Impl

access the callbacks? One idea is to use the CRTP pattern to allow WidgetImpl to cast to its

derived type:

6/6

template<typename D>
struct WidgetImpl : IWidget
{
 ...
 HRESULT OnCallback1();
 HRESULT OnCallback2();
 ...
};

struct Widget final : WidgetImpl<Widget>,
 CallbackWrappers<&WidgetImpl<Widget>::OnCallback1,
 &WidgetImpl<Widget>::OnCallback2>
{
};

But this is just about as clunky, so it doesn’t really save us much.

We’re nowhere near done yet, because this still doesn’t work. We’ll pick up the investigation

next time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

