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A capturing lambda can be a coroutine, but you have to
save your captures while you still can
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We saw some time ago that capturing lambdas which are coroutines result in lifetime issues

because the lambda itself returns at the first suspension point, at which point there’s a good

chance it will be destructed. After that point, any attempt by the lambda body to access those

captured variables is a use-after-free bug.

winrt::IAsyncAction DoSomethingInBackgroundAsync() 
{ 
   auto a = something(); 
   auto b = something(); 
   auto c = something(); 

   auto callback = [a, b, c]() 
       -> winrt::IAsyncAction 
       { 
           co_await winrt::resume_background(); 
           DoSomething(a, b, c); // use-after-free bug! 
       }; 
   return callback(); 
} 

This problem is so insidious that there’s a C++ Core Guideline about it: CP.51: Do not use

capturing lambdas that are coroutines.

One workaround is to pass the captures as explicit parameters:

https://devblogs.microsoft.com/oldnewthing/20211103-00/?p=105870
https://devblogs.microsoft.com/oldnewthing/20190116-00/?p=100715
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rcoro-capture
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winrt::IAsyncAction DoSomethingInBackgroundAsync() 
{ 
   auto a = something(); 
   auto b = something(); 
   auto c = something(); 

   auto callback = [](auto a, auto b, auto c) 
       -> winrt::IAsyncAction 
       { 
           co_await winrt::resume_background(); 
           DoSomething(a, b, c); // use-after-free bug! 
       }; 
   return callback(a, b, c); 
} 

However, this workaround isn’t always available because you may not control the code that

invokes the lambda.

void RegisterClickHandler(Button const& button, int key) 
{ 
   button.Click([key](auto sender, auto args) 
       -> winrt::fire_and_forget 
       { 
           co_await winrt::resume_background(); 
           NotifyClick(key); 
       }); 
} 

You aren’t the one who invokes the lambda. That lambda is invoked by the Click event, and it

passes two parameters (the sender and the event arugments); there’s no way to convince it to

pass a key  too.

One idea would be to extract the work into a nested lambda. We control the invoke of the

nested lambda and can pass the extra parameter that way.

void RegisterClickHandler(Button const& button, int key) 
{ 
   button.Click([key](auto sender, auto args) 
       -> winrt::fire_and_forget 
       { 
           return [](auto sender, auto args, int key) 
           -> winrt::fire_and_forget 
           { 
               co_await winrt::resume_background(); 
               NotifyClick(key); 
           }(std::move(sender), std::move(args), key);
       }); 
} 

The outer lambda is not a coroutine. It’s just calling another lambda and propagating the

return value.
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The inner lambda is a coroutine. To be safe from use-after-free, it is a captureless coroutine,

and all of its state is passed as explicit parameters. Here is where we sneak in the extra key

parameter.

Now, I’m working a bit too hard here, because the coroutine body doesn’t use sender  or

args  so I can accept them by universal reference (to avoid a copy) and just ignore them. To

make sure I don’t use them by mistake, I’ll leave the parameters anonymous.

void RegisterClickHandler(Button const& button, int key) 
{ 
   button.Click([key](auto&&, auto&&) 
       -> winrt::fire_and_forget 
       { 
           return [](int key) 
           -> winrt::fire_and_forget 
           { 
               co_await winrt::resume_background(); 
               NotifyClick(key); 
           }(key); 
       }); 
} 

But what if I told you there was an easier way, where you can have your capturing lambda be

a coroutine?

The trick is to make copies of your captures into the coroutine frame before the coroutine

reaches its first suspension point. (Note that this trick requires eager-started coroutines.

Lazy-started coroutines suspend immediately upon creation, so you have no opportunity to

copy the captures into the frame.)

void RegisterClickHandler(Button const& button, int key) 
{ 
   button.Click([key](auto&&, auto&&) 
       -> winrt::fire_and_forget 
       { 
           auto copiedKey = key; 
           co_await winrt::resume_background(); 
           NotifyClick(copiedKey); 
       }); 
} 

We explicitly copy the captured variable into the frame. When execution reaches the first

suspension point at the co_await , the captured variables disappear. Lesser coroutine

lambdas would tremble in fear, but not us! We laugh at the C++ language and say, “Go

ahead, take those captured variables away and turn them into poison. It doesn’t matter

because I made my own copy before you turned them evil.”
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The tricky part, though, is making sure that we don’t touch the original already-freed

captures and operate only on our local copies. Somebody coming in later and making a

change to the function may not realize that the captures are poisoned and try to use them.

Oops. Look who’s laughing now.

Next time we’ll look at a way to make this slightly less error-prone.
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