
1/3

November 5, 2021

The case of the C++/WinRT cached factories that pointed
into freed memory

devblogs.microsoft.com/oldnewthing/20211105-00

Raymond Chen

A customer had a program that crashed inside C++/WinRT:

contoso!winrt::impl::consume_Windows_ApplicationModel_AppExtensions_
 IAppExtensionCatalogStatics<winrt::Windows::ApplicationModel::
 AppExtensions::IAppExtensionCatalogStatics>::Open+0x22
contoso!winrt::Windows::ApplicationModel::AppExtensions::
 AppExtensionCatalog::Open::__l2::<lambda_...>::operator()+0x22
contoso!winrt::impl::call_factory+0x42
contoso!winrt::Windows::ApplicationModel::AppExtensions::
 AppExtensionCatalog::Open+0x4c
contoso!contoso::impl::FindContosoExtension+0xc2
contoso!ContosoSession::Initialize+0xc9
contoso!ContosoSession::Create+0xf6
contoso!ContosoSession::Run+0x34
kernel32!BaseThreadInitThunk+0x10
ntdll!RtlUserThreadStart+0x2b

contoso!winrt::impl::consume_Windows_ApplicationModel_AppExtensions_
 IAppExtensionCatalogStatics<winrt::Windows::ApplicationModel::
 AppExtensions::IAppExtensionCatalogStatics>::Open+0x22:

 mov rax,qword ptr [rax+30h] ds:00007fff`00778030=????????????????

0:004> ln @rax
<Unloaded_AppExtension.dll>+0x28000

This is a call to a static method of a Windows Runtime class. We saw some time ago that

static methods are implemented by the factory object. C++/WinRT caches these factory

objects so that subsequent attempts to call static methods can take advantage of the work

done by the first call. But here, we are trying to call the factory, only to discover that it has

been unloaded!

The developers of All Extension.dll say that their component follows the standard

patterns, including rejecting Dll Can Unload Now if there are any outstanding objects. So

what’s going on? How could they get unloaded while there still outstanding objects?

https://devblogs.microsoft.com/oldnewthing/20211105-00/?p=105878

2/3

I guessed that what happened is that somebody called CoUninitialize , because

CoUninitalize will ask a DLL if it is okay to unload now, but the answer is a foregone

conclusion: Whether or not the DLL says that it’s okay to unload, COM is going to unload it.

And that orphans the outstanding references to the DLL’s factories, which are now pointers

into freed memory.

Now, if your module is a DLL that exposes Windows Runtime objects, then your Dll Can ‐

Unload Now is called when COM uninitializes, and the standard implementation provided by

C++/WinRT empties the factory caches when this happens. That way, when COM

uninitializes, all the cached factories are thrown away, seeing as they are about to become

invalid.

In this case, however, contoso.dll does not expose any Windows Runtime objects of its

own. Its use of C++/WinRT is purely as a consumer. It was not loaded by COM, and

consequently, its Dll Can Unload Now (if it even had one) would not be called.

When the main program calls into Create Contoso Session , a worker thread is created to

manage the Contoso session. That worker thread initializes COM when it starts and

uninitializes COM when it’s finished, thereby providing a courtesy to the main program,

saving it the hassle of having to initialize COM.

This courtesy, however, came at great personal cost: When the Contoso session ended, the

worker thread called CoUninitialize , thereby invalidating its own factory cache. When

the host program tried to create a second session, the new worker thread crashed trying to

use a factory from a no-longer-valid cache.

Part of the solution here is to remove the courtesy. Have the main program initialize COM

and just leave it initialized for the lifetime of the process. Not only does that keep the

C++/WinRT factory cache valid, it avoids all the wasted effort of uninitializing COM, only to

initialize it again moments later.

If the host program doesn’t want to dedicate a thread to keeping COM alive, it can use the

Co Increment MTA Usage function to keep the MTA alive.

The root cause, however, is that contoso.dll is itself not a COM server, so it never gets

called by COM to clean up. Contoso could switch its entry point to a COM entry point (where

the client uses CoCreateInstance or RoActivateInstance to load the DLL), so that

COM is in control of the lifetime and will call DllCanUnloadNow . If that’s not possible,

Contoso could at least register an object in the COM static store so it can clean its factory

cache when COM uninitializes.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20131106-00/?p=2723
https://devblogs.microsoft.com/oldnewthing/20191114-00/?p=103100
https://devblogs.microsoft.com/oldnewthing/20210208-00/?p=104812
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

