
1/6

November 11, 2021

The inside story of the outside investigation of SoftRAM
95

devblogs.microsoft.com/oldnewthing/20211111-00

Raymond Chen

With the release of Windows 95 came quite a number of software products tailored to run on

it. One of them that drew a lot of attention at the time was SoftRAM 95, a product whose box

claimed it would “Double Your Memory”.

It turns out that it didn’t.

There are many write-ups of what the software did (and notably didn’t do), but almost none

of them dug deep into the code to explain what it was doing.

So I’m writing one.

In late 1995, I was asked to investigate the product because it was causing Windows 95

machines to crash and was generating a lot of support calls, not to mention bad PR. It’s

possible that the software was tripping over some bug in Windows 95, and that meant having

to put out a patch for it.

I ended up doing a full disassembly of the custom paging driver they installed. The Windows

3.0 and 3.1 device driver kits (DDKs) included the source code for the paging driver, and the

software’s custom paging driver was clearly based on the one that shipped in one of the older

DDKs.

What they did was allocate a chunk of non-paged memory at system startup and use it as a

compression pool. When memory was paged out, the driver compressed the memory and

added it to the pool. The format of each block in the compression buffer was a byte specifying

the compression algorithm, followed by the compressed data.

When the system asked to page in some memory, the driver checked if there was a

compressed copy in the pool. If so, it decompressed the data and returned it. If not, then it

read the memory from disk in the usual manner.

https://devblogs.microsoft.com/oldnewthing/20211111-00/?p=105897

2/6

To explain what’s going on here, let’s draw some pictures. We’ll rank the pages in the system

based on how likely they are to be used, with hot pages (most likely to be used) closer to the

left and and cold pages (least likely to be used) closer to the right. An unmodified system

looks like this:

 …

In memory
 (fast)

On disk
 (slow)

In the above example of a hypothetical system, we have the 16 hottest pages in memory, and

the remaining pages on disk. The size of the “In memory” section is the amount of RAM you

have. The size of the “On disk” section can grow up to the maximum size of your page file.

When a new page is allocated, it is inserted on the left as the hottest page. Since the size of

the “In memory” section is fixed, that pushes the lowest-ranked in-memory page to disk. In

general, nearly all of the pages in the system are cold, so the above diagram is not to scale.

The “On disk” section is far bigger than the “In memory” section, but all the excitement is in

the “In memory” section, so I’ve zoomed in on that part.

The idea is to convert some of those RAM pages into compressed RAM pages:

In memory
 (fast)

Compressed
 (medium)

On disk
 (slow)

I’ve taken half of the RAM in the system and compressed it. The diagram shows the

compressed pages smaller than normal than normal pages due to the compression, to

emphasize that the total amount of RAM hasn’t changed. What changed is how the memory

is being used.

But I can redraw the diagram so that each page is the same size. This is the view of the system

from point of view of applications and the memory manager:

In memory
 (fast)

Compressed
 (medium)

On disk
 (slow)

From the point of view of the rest of the system, it looks like you gained more memory, sort

of.

3/6

Compressed memory isn’t immediately usable like regular memory: When an application

requests access to memory that has been compressed, the compressed data is uncompressed

into a normal page, and the lowest-ranked normal page becomes a compressed page.¹ This

compression and decompression takes time, but since you’re competing against a hard drive,

it’ll still be faster than disk I/O.

The hope is that even though you took away a bunch of fast pages, you replaced them with a

larger number of medium-speed pages, thereby lowering the number of accesses to slow

pages. In the above example, we’re assuming a compression ratio of 2x, so we took away 8

fast pages and turned them into 16 medium-speed pages.

 Before After

Normal pages 16 8

Compressed pages 16

Pages on disk N N − 8

Whether this is a net win depends on the memory access patterns of the applications you use.

If you had an application that had 6 very hot pages, and 14 additional warm pages, then this

could very well be an improvement, since the very hot pages could stay in normal memory,

and the 14 warm pages could take turns occupying the two remaining normal memory pages.

On the other hand, If you had an application that had 10 very hot pages, and 10 additional

warm pages, then this could end up a net loss, because there aren’t enough normal pages to

hold the application’s very hot pages, so you are constantly compressing and decompressing

memory, and that extra time spent on compression could exceed the time saved by avoiding

the I/O to the four pages that didn’t fit in RAM before.

Okay, so we see that the design hinges on the quality of the compression engine. You want to

be able to squeeze as much data into those compressed pages so that you can more than

make up for the loss of normal pages with a much larger number of compressed pages.

Back to the analysis.

I found the compression algorithm. It was called to take the memory from the I/O buffer and

compress it into the compression buffer. Its counterpart decompression algorithm was used

on page-in requests to decompress the data in the compression buffer and put it in the I/O

buffer.

They implemented only one compression algorithm.

It was memcpy .

4/6

In other words, their vaunted patent-pending compression algorithm was “copy the data

uncompressed.”

The whole compression architecture was implemented, with a stub compression function

that did no compression, presumably with the idea that “Okay, and then we’ll put an

awesome compression function here, but for now, we’ll just use this stub function so we can

validate our design.” But they ran out of time and shipped the stub.

It’s like creating a RAM drive for your swap file. All you did was take some pages away from

the “fast” category and create the same number of pages in the “medium” category.

So far, what we have is a placebo with some performance degradation. Why was it crashing?

Did their design uncover a bug in the Windows 95 memory manager?

When they added code to implement the compression buffer, they didn’t use critical sections

or any other synchronization primitives to protect the data structures. If two threads started

paging at the same time, the driver corrupted its data structures due to concurrency. The

next time the driver went to uncompress the data for a page, it got confused and produced

the wrong memory, and that’s why Windows 95 was crashing.

They were inadvertently simulating a broken hard drive.

This also explained why the crashes usually happened when the system was under heavy

paging load: Under those conditions, there is more likelihood that two paging requests will

overlap, thereby triggering the corruption.

Oh, remember that I said that their driver was based on the one included in the DDK? They

didn’t bother to change the name in the device driver description block, so when the driver

crashed, the crash was blamed on PAGEFILE. Since this is the name of the default paging

driver, the crash message made it look like a default Windows driver had crashed, when in

fact it was their substitute with the same name.

Bonus reading: I was not the only one to do an analysis of the internals of SoftRAM 95.

Some guy named Mark Russinovich also took the product apart and came to the same

conclusions. I wonder what happened to that guy. He seems kind of sharp.

Bonus chatter: A colleague of mine noted that SoftRAM 95 was a follow-up to a similar

product designed for Windows 3.1. The Windows 3.1 version tuned your system in two ways

to increase the number of programs you could run at once: First, it increased the size of your

page file, which is something you could have done manually anyway. Second, it used some

tricks to keep certain components out of conventional memory. These tricks were well-known

to system optimization tools, and you could even get a utility from Microsoft for free that did

https://www.drdobbs.com/parallel/inside-softram-95/184409937
https://jeffpar.github.io/kbarchive/kb/157/Q157534/

5/6

the same thing, written by that very colleague. Windows 95 used a dynamic page file, and it

addressed the conventional memory problem as well, leaving the Windows 3.1 of their

product with nothing to do when ported to Windows 95.

Bonus bonus chatter: I heard through the grapevine (by way of marketing) that the

company had two developers for the product, one for the device driver and the other for the

user interface. So I guess what they were missing was a third developer to write the

compression engine.

Bonus bonus bonus chatter: My boss at the time was sent to staff a booth at a trade

show. One of the other companies at the show was the manufacturer of SoftRAM 95. When

the show concluded, he went over and traded a Microsoft staff shirt for one of their shirts,

and then gave it to me.

Bonus bonus bonus bonus chatter: How did this program manage to earn a “Designed

for Windows 95” sticker? Easy: Because it was designed for Windows 95. The logo program

rules say that you have to follow certain guidelines, like using the standard File Open dialog

to select files and installing into the Program Files directory. The program followed those

guidelines, so they got the sticker. Some people point out that it should have failed the

“functions substantially as described” rule, but that rule wasn’t saying that every claim must

be independently verified by an in-depth reverse-engineering. If that were the standard, then

it could take years to pass that test. Validating a “Learn German in 30 Days” program would

have to verify that all the vocabulary and grammar are correct, and then have somebody use

the program for 30 days and see if they learned German. What the rule is trying to do is catch

a program that fails to run on the minimum system configuration, or which purports to be a

word processor, but in fact plays tic-tac-toe.

¹ From what I recall (but my recollection could be faulty), the compressed data was managed

in a simple way: In a circular buffer. Whenever a new page was compressed, it was appended

to the buffer, and whenever a page needed to be evicted, the page at the head of the buffer

was chosen. This makes bookkeeping very simple, but it does have its own inefficiencies:

When a page got paged in from the compression buffer, and then was paged back out, the

memory for the old compressed data still hung around in the compression buffer wasting

space. In theory, they could have reused that memory right away, but doing so would have

complicated the algorithms since you now have fragmentation to deal with. The circular

buffer design has the advantage of having extremely simple memory management. This was

back in the days when device drivers were all written in assembly language. Simplicity of

design is very important because you’re implementing that design instruction by instruction.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

6/6

