
1/4

November 15, 2021

A practical use for GetHGlobal FromStream when sharing
was never your intention

devblogs.microsoft.com/oldnewthing/20211115-00

Raymond Chen

A little while ago, I noted that managing shared access to the HGLOBAL inside a stream can get

tricky, and opined that the GetHGlobal FromStream should have been something like

IStream On HGlobal::Detach HGlobal. But in fact there’s a straightforward use case for

GetHGlobal FromStream even when there is no sharing going on.

The STGMEDIUM structure is a currency for passing data into and out of an IData Object . it

is basically a discriminated union:

struct STGMEDIUM
{
 DWORD tymed;
 union
 {
 HBITMAP hBitmap;
 HMETAFILEPICT hMetaFilePict;
 HENHMETAFILE hEnhMetaFile;
 HGLOBAL hGlobal;
 LPOLESTR lpszFileName;
 IStream* pstm;
 IStorage* pstg;
 };
 IUnknown* pUnkForRelease;
};

The tymed member specifies which of the members of the union is active. Let’s focus on the

case where the value is TYMED_MWBR>HGLOBAL , in which case the structure simplifies to

struct STGMEDIUM
{
 DWORD tymed = TYMED_HGLOBAL;
 HGLOBAL hGlobal;
 IUnknown* pUnkForRelease;
};

https://devblogs.microsoft.com/oldnewthing/20211115-00/?p=105922
https://devblogs.microsoft.com/oldnewthing/20210928-00/?p=105737
https://devblogs.microsoft.com/oldnewthing/20211001-00/?p=105748

2/4

When you are finished with the STGMEDIUM , you call Release Stg Medium , and in the case

of a TYMED_HGLOBAL the rule for Release Stg Medium is

If pUnkForRelease is not null, then call pUnkForRelease->Release(); .

If pUnkForRelease is null, then call GlobalFree(hGlobal); .

In words, if there is a pUnkForRelease , then it is the “owner” which controls the lifetime of

the HGLOBAL , and you tell it that you are done by releasing the reference count on the

owner. When the owner’s reference count goes to zero, it destroys itself (and the HGLOBAL).

On the other hand, if there is no pUnkForRelease , then the HGLOBAL is “ownerless”, and

you just free it when you’re done.

The idea here is that if the HGLOBAL was expensive to produce, your data object may decide

to cache the result rather than having to produce it from scratch every time. In that case,

when you give out the data, you can do this:

if (m_cachedHglobal == nullptr)
{
 RETURN_IF_FAILED(Calculate(&m_cachedHglobal));
}

pstgm->tymed = TYMED_HGLOBAL;
pstgm->hGlobal = m_cachedHglobal;
pstgm->pUnkForRelease = this;
this->AddRef(); // because we put it in pUnkForRelease

When the recipient of the data is finished, they will call Release Stg Medium , and Release ‐

Stg Medium will see that there is a non-null pUnkForRelease and instead of freeing the

HGLOBAL , it’ll release the pUnkForRelease .

This means that the m_cachedHglobal is not destroyed when the recipient of the data is

finished. It lives on, so it can be returned to another client.

Finally, when the data object is destroyed, it also destroys the m_cachedHglobal .

This pattern means that as long as anybody still has a STGMEDIUM referring to your cached

HGLOBAL , your entire data object will remain alive. But maybe your data object has a lot of

stuff in it, like an entire HTML DOM, and the HGLOBAL is a cache of the textContent .

Somebody who asks for the textContent and hangs onto it for a long time will keep your

data object alive, even if they aren’t using the data object any more:

3/4

HRESULT GetTheText(STGMEDIUM* pstgm)
{
 wil::com_ptr<IDataObject> pdto;
 RETURN_IF_FAILED(GetTheDataObject(&pdto));

 FORMATETC fe;
 fe.cfFormat = CF_UNICODETEXT;
 fe.ptd = nullptr;
 fe.dwAspect = DVASPECT_CONTENT;
 fe.lindex = -1;
 fe.tymed = TYMED_HGLOBAL;

 RETURN_IF_FAILED(pdto->GetData(&&fe, pstgm));

 return S_OK;
}

This function gets the data object and extracts the Unicode text. The data object is thrown

away when the com_ptr destructs, and all that remains is the text in the STGMEDIUM ‘s

HGLOBAL .

The catch here is that the caller of this function might decide to keep the text for a long time,

and that’s going to keep your big data object around for a long time. Even though all that

really needs to be kept alive is the text.

This is where you can use one of the lesser powers of GetHGlobal FromStream .

Instead of making the data object be the cache for the HGLOBAL , you can make an

HGLOBAL -backed stream with Create Stream On HGlobal , and let the stream be the one in

charge of the HGLOBAL ‘s lifetime.

if (m_cachedStream.get() == nullptr)
{
 wil::unique_hglobal text;
 RETURN_IF_FAILED(Calculate(&text));
 RETURN_IF_FAILED(CreateStreamOnHGlobal(
 text.get(), TRUE /* fDeleteOnRelease */,
 &m_cachedStream));
 text.release(); // m_cachedStream owns it now
}

pstgm->tymed = TYMED_HGLOBAL;
RETURN_IF_FAILED(GetHGlobalFromStream(
 m_cachedStream.get(), &pstgm->hGlobal));
// The stream is the owner of the HGLOBAL
pstgm->pUnkForRelease = m_cachedStream.copy().detach();

This time, the owner of the HGLOBAL is the m_cached Stream , and therefore if the storage

medium is retained beyond the life of the data object, the data object can destruct, and the

m_cachedStream will deal with freeing the HGLOBAL on final release.

4/4

I’m guessing this might even have been the scenario for which GetHGlobal FromStream was

originally invented.

Mind you, we’re using an entire stream just to babysit an HGLOBAL . We could have written a

custom babysitter:

struct IUnknownOnHGLOBAL : winrt::implements<IUnknownOnHGLOBAL, ::IUnknown>
{
 IUnknownOnHGLOBAL(HGLOBAL glob) : m_glob(glob) {}
 wil::unique_hglobal glob;
};

On the other hand, using Create Stream On HGlobal may end up being the easier route if the

HGLOBAL was originally generated from a stream in the first place:

if (m_cachedStream.get() == nullptr)
{
 wil::com_ptr<IStream> stm;
 RETURN_IF_FAILED(CreateStreamOnHGlobal(
 nullptr, TRUE /* fDeleteOnRelease */,
 &stm));
 RETURN_IF_FAILED(SaveToStream(stm.get()));
 m_cachedStream = std::move(stm);
}

pstgm->tymed = TYMED_HGLOBAL;
RETURN_IF_FAILED(GetHGlobalFromStream(
 m_cachedStream.get(), &pstgm->hGlobal));
pstgm->pUnkForRelease = m_cachedStream.copy().detach();

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

