
1/5

November 25, 2021

How do I pass an array of variable-sized
PROPSHEETPAGE structures to PropertySheet?

devblogs.microsoft.com/oldnewthing/20211125-00

Raymond Chen

Last time, we noted that you can add your own custom data to the end of the PROPSHEETPAGE,

and if you set the dwSize to include the custom data, then the system will copy that custom

data into the HPROPSHEETPAGE .

This technique comes in handy if you need to create a property sheet page with Create ‐

Prop Sheet Page , since it gives you a way to store more data than just the single lParam

that comes with the PROPSHEETPAGE structure.

When you fill out a PROPSHEETHEADER structure, you can choose whether you’re passing an

array of HPROPSHEETPAGE handles (created by Create Prop Sheet Page) or an array of

PROPSHEETPAGE structures. Passing an array of HPROPSHEETPAGE handles isn’t a problem,

since all HPROPSHEETPAGE handles are the same size, regardless of the size of the

PROPSHEETPAGE lurking inside them. But passing an array of variable-sized

PROPSHEETPAGE structures is a trickier business.

What we want to do is lay out the memory like this:

page1.dwSize PROPSHEETPAGE dwSize
 dwFlags
 ⋮

 lParam
 ⋮

 page1
 extra

 data

page2.dwSize PROPSHEETPAGE dwSize
 dwFlags
 ⋮

 lParam
 ⋮

https://devblogs.microsoft.com/oldnewthing/20211125-00/?p=105967
https://devblogs.microsoft.com/oldnewthing/20211124-00/?p=105961

2/5

 page2
 extra

 data

page3.dwSize PROPSHEETPAGE dwSize
 dwFlags
 ⋮

 lParam
 ⋮

 page3
 extra

 data

We can do this by manufacturing a structure to hold the three extended PROPSHEETPAGE

structures.

struct ThreePages
{
 Page1Data page1;
 Page2Data page2;
 Page3Data page3;
};

ThreePages pages;

The naïve say of setting the dwSize members is to set each one to the size of the

corresponding structure.

pages.page1.dwSize = sizeof(pages.page1);
pages.page2.dwSize = sizeof(pages.page2);
pages.page3.dwSize = sizeof(pages.page3);

This assumes that the three structures can be laid out next to each other without any inter-

member padding. But that may not be true if the structures have different alignment

requirements, say, if one of them contains a __mi128 .

sizeof(page1) PROPSHEETPAGE dwSize
 dwFlags
 ⋮

 lParam
 ⋮

 page1
 extra

 data

oops (padding?)

3/5

sizeof(page2) PROPSHEETPAGE dwSize
 dwFlags
 ⋮

 lParam
 ⋮

 page2
 extra

 data

oops (padding?)

sizeof(page3) PROPSHEETPAGE dwSize
 dwFlags
 ⋮

 lParam
 ⋮

 page3
 extra

 data

 (padding?)

In the presence of padding, we have a shortfall between the size of each page and the start of

the next page, resulting in an “oops” gap highlighted above.

In order to accommodate varying alignment requirements, the dwSize must include the

padding so that the property sheet manager can find the next structure.¹ I’ve marked some

key addresses in the diagram below:

page1.dwSize PROPSHEETPAGE dwSize
 dwFlags
 ⋮

 lParam
 ⋮

← &page1

 page1
 extra

 data

 (padding?)

page2.dwSize PROPSHEETPAGE dwSize
 dwFlags
 ⋮

 lParam
 ⋮

← &page2

4/5

 page2
 extra

 data

page3.dwSize PROPSHEETPAGE dwSize
 dwFlags
 ⋮

 lParam
 ⋮

← &page3

 page3
 extra

 data

 ← &pages + 1

pages.page1.dwSize = static_cast<DWORD>(
 reinterpret_cast<DWORD_PTR>(std::addressof(pages.page2)) -
 reinterpret_cast<DWORD_PTR>(std::addressof(pages.page1)));
pages.page2.dwSize = static_cast<DWORD>(
 reinterpret_cast<DWORD_PTR>(std::addressof(pages.page3)) -
 reinterpret_cast<DWORD_PTR>(std::addressof(pages.page2)));
pages.page3.dwSize = static_cast<DWORD>(
 reinterpret_cast<DWORD_PTR>(std::addressof(pages + 1)) -
 reinterpret_cast<DWORD_PTR>(std::addressof(pages.page3)));

This is quite a mouthful, but the idea is that we want to measure the distance to the next

thing. We use std::addressof instead of the traditional & operator to protect against the

possibility that the & operator has been overloaded.²

Yes, this is quite annoying, but it’s also probably not something you’re likely to be doing,

because you could just use a pointer to a stack-allocated object which will remain valid until

Property Sheet returns. The main value of the PROPSHEETPAGE payload is in the case

where you need to produce an HPROPSHEETPAGE , since the HPROPSHEETPAGE is probably

going to outlive any stack variables.

But it’s there if you need it.

¹ Don’t even think of using #pragma pack(1) to remove the padding. This will misalign the

next structure and result in crashes on alignment-sensitive platforms.

² Overloading the & operator is something that annoys C++ library authors, although it’s

still nowhere as annoying as overloading the comma operator.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20200904-00/?p=104172
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

5/5

