
1/2

November 30, 2021

How can my C++/WinRT component pass a std::vector
back to the caller?

devblogs.microsoft.com/oldnewthing/20211130-00

Raymond Chen

The ReceiveArray pattern is the Windows Runtime pattern for how a function can return a C-

style conformant array to its caller. In C++/WinRT, the projected version of the function is

// [out] parameter
void M(com_array<T>& value);

// return value
com_array<T> M();

A customer had a method that generated the result into a std::vector<int> . How do you

return this to the caller? “There is no move constructor for com_array<int> that takes a

std::vector<int> .”

That’s right, there is no constructor for com_array<int> that takes a

std::vector<int>&& . If you think about it, there can’t possibly be one.

The com_array is required to use the COM task allocator to allocate its memory, because

the memory is going to be passed back to the calling component, and the calling component

is responsible for freeing the memory. This means that the memory allocator must be

something language-agnostic, since the caller could be written in C# or Visual Basic or

JavaScript or Rust or whatever.

On the other hand, std::vector uses the C++ free store to allocate memory.¹ This is an

allocator specific to the C++ language. Actually, it’s even worse. It’s an allocator that is

specific to a particular implementation of the C++ language. Code that uses one version of

the compiler and runtime library cannot interoperate with code that uses a different version

of the compiler and runtime library.

The allocators don’t agree, so you won’t be able to transfer ownership: The memory was

allocated from some version of the C++ free store, but putting it in a com_array will result

in the memory being freed by Co Task Mem Free .

Okay, so you can’t move it into a com_array , but can you copy it?

https://devblogs.microsoft.com/oldnewthing/20211130-00/?p=105985

2/2

Yes, and the com_array even has a special constructor for copying from a std::vector .

std::vector<int32_t> m_indices;

com_array<int32_t> GetIndices()
{
 return com_array<int32_t>(m_indices);
}

Starting in C++/WinRT version 2.0.200601.2, there’s a deduction guide that that deduces

com_array<T> if you construct from a std::vector<T> , so you need only write

com_array<int32_t> GetIndices()
{
 return com_array(m_indices);
}

If you aren’t wedded to std::vector , you could generate the results directly into a

winrt::com_array and return it, thereby avoiding a copy.

¹ You can override this by providing a custom allocator, say, by a custom allocator that

obtains memory via Co Task Mem Alloc . However, library types with custom allocators are

going to create interop friction with other code that expects library types with the standard

allocator.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

