
1/2

December 10, 2021

It’s okay to be contrary, but you need to be consistently
contrary: Going against the ambient character set

devblogs.microsoft.com/oldnewthing/20211210-00

Raymond Chen

In Windows, you declare your character set preference implicitly by defining or not defining

the symbol UNICODE before including the windows.h header file. (Related: TEXT vs. _TEXT

vs. _T, and UNICODE vs. _UNICODE.) This determines whether undecorated function

names redirect to the ANSI version or the Unicode version, but it doesn’t make the opposite-

version inaccessible. You just have to call them by their explicit names. And it’s important

that you be consistent about it. If you miss a spot, the characters get all messed up.

// UNICODE not defined
#include <windows.h>

void UpdateTitle(HWND hwnd, PCWSTR title)
{
 SetWindowTextW(hwnd, title);
}

In the above example, we did not define the symbol UNICODE , so the ambient character set

is ANSI. Since we want to call the Unicode version of Set Window Text , we must use its

explicit Unicode name Set Window TextW .

Most of the time, these errors are detected at compile time due to type mismatches. For

example, if we forgot to put the trailing W on the function name, we would get the error

error C2664: 'BOOL SetWindowTextA(HWND,const char *)': cannot convert argument 2 from
'const wchar_t *' to 'const char *'
note: Types pointed to are unrelated; conversion requires reinterpret_cast, C-style
cast or function-style cast

And that’s your clue that you forgot to W-ize the Set Window Text call. You should have

called the W version explicitly: Set Window TextW .

However, there’s a category of functions that elude this compile-time detection: The

functions that have separate ANSI and Unicode versions but take only character-set-

independent parameters. Common examples are Dispatch Message , Translate Message ,

Translate Accelerator , Create Accelerator Table , and most notably, Def Window Proc.

https://devblogs.microsoft.com/oldnewthing/20211210-00/?p=106021
https://devblogs.microsoft.com/oldnewthing/20211209-00/?p=106017
https://devblogs.microsoft.com/oldnewthing/20040212-00/?p=40643
https://devblogs.microsoft.com/oldnewthing/20181101-00/?p=100105
https://devblogs.microsoft.com/oldnewthing/20190110-00/?p=100675

2/2

For some reason, when I get called in to investigate this sort of problem, it’s usually the Def ‐

Window Proc that is the source of the problem.

But I don’t think it’s because people get the others right and miss the Def Window Proc . I

think it’s because the mistakes in the other functions are much less noticeable. The mistakes

are still there, and maybe you’ll get a bug report from a user in Japan when they run into it,

but that’s not something that is going to be noticed in English-based testing as much as a

string that is truncated down to its first letter.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20191030-00/?p=103036
https://devblogs.microsoft.com/oldnewthing/20180207-00/?p=97985
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

