
1/2

December 30, 2021

The C++/CX String^ is not an object, even though it
wears a hat

devblogs.microsoft.com/oldnewthing/20211230-00

Raymond Chen

C++/CX refers to Windows Runtime strings as Platform::String^ with a hat instead of a

star. But even though the string wears a hat, it is not an Object^ .

The String^ type is a representation of the Windows Runtime HSTRING . And of the rules

of HSTRING is that a null pointer is a valid HSTRING , and it represents the empty string, that

is, a string with no characters.

This makes String^ a strange sort of beast.

String^ s = L""; // sets s = nullptr

If you assign an empty string to it, you get nullptr back.

void f(String ^s)
{
 if (s) { /* string is not empty */ }
}

Testing a String^ against nullptr tests whether the string is empty.

String ^s = nullptr; // represents empty string
auto data = s->Data(); // legal! returns pointer to L""
auto length = s->Length(); // legal! returns 0.
auto equal = s->Equals(L"nope"); // legal! returns false.

That’s right: I dereferenced a null pointer and it felt good.

Calling methods on a null String^ pointer is legal, and the operations are performed on an

empty string.

This weird behavior of null String^ pointers has consequences beyond just strings. If you

convert a null String^ to Object^ (a boxing operation), the null-ness is preserved:

String^ s = L""; // s is nullptr
Object^ o = s; // o is nullptr!

https://devblogs.microsoft.com/oldnewthing/20211230-00/?p=106063
https://devblogs.microsoft.com/oldnewthing/20160615-00/?p=93675

2/2

This differs from the behavior in other projections like C#, JavaScript, and C++/WinRT,

where boxing an empty string produces a non-null object (that in turn holds an empty

string).

The fact that a String^ is not an Object^ means that you cannot reinterpret between

them.

String^ s = /* some value */;
Object^ o = reinterpret_cast<Object^>(s); // crash

The reinterpret_cast will treat a String^ as an Object^ . But a String^ is secretly

a HSTRING , whereas an Object^ is secretly an IInspectable* . The reinterpret-cast tells

the compiler to treat this HSTRING as if it were an IInspectable* , and bad things

happen, since the compiler is going to try to call the AddRef method from the

IInspectable ‘s vtable, but HSTRING s don’t have a vtable, much less a vtable with

AddRef in slot 1.

What you need to do is box the string into an object and unbox the object back into a string.

Object^o = s; // box the string into an object
String^s = static_cast<String^>(o); // unbox the object into a string

Bonus chatter: C++/CX delegates are also not objects, even though they too wear hats.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

