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A little while ago, I discussed the common ABI for C++20 coroutine handles. Recall that the

common ABI is

struct coroutine_frame_abi 
{ 
   void (*resume)(coroutine_frame_abi*); 
   void (*destroy)(coroutine_frame_abi*); 
};

and that in practice, the implementations set themselves up like this:

struct coroutine_frame 
{ 
   void (*resume)(coroutine_frame*); 
   void (*destroy)(coroutine_frame*); 
   uint16_t index; 
   /* other stuff */ 
};

The index  represents the point inside the coroutine at which execution was suspended.

Each time the coroutine suspends, the index  is updated, and when the coroutine resumes,

the resume  function switches on the index  to decode where to resume execution.

What other designs could have been used?

One counter-proposal was that instead of updating the index, the code could update the

resume  and destroy  pointers to point to where to resume next (or what to do if the

coroutine is destroyed).

Updating the function pointers would speed up resumption, since it could just jump directly

to the resumption point instead of having to execute a switch  statement.

However, it also comes with a cost.

https://devblogs.microsoft.com/oldnewthing/20220103-00/?p=106109
https://devblogs.microsoft.com/oldnewthing/20211007-00/?p=105777
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For one thing, Control Flow Guard is most effective when function pointers are multiples of

16, and the Microsoft compiler will arrange for all function pointer jump targets to be placed

on 16-byte boundaries. The clang compiler also supports Control Flow Guard, but I don’t

know whether it puts jump targets on 16-byte boundaries.

Putting all resumption and destruction points on 16-byte boundaries would on average insert

eight bytes for each potential entry point. The destruction entry points can often be quite

small, destructing one object and then falling through to another case where the remainder of

the objects are destructed.

For example:

winrt::IAsyncAction MyCoroutine() 
{ 
   auto p1 = std::make_unique(1); 
   co_await Something1(); 
   { 
       auto p2 = std::make_unique(2); 
       co_await Something2(); 
   } 
   auto p3 = std::make_unique(3); 
   co_return; 
} 

There are four suspension points in this coroutine, once we add the two extra suspension

points provided by the promise.

winrt::IAsyncAction MyCoroutine() 
{ 
   promise p; 
   co_await p.initial_suspend(); 
   // 1 

   auto p1 = std::make_unique(1); 
   co_await Something1(); 
   // 2 

   { 
       auto p2 = std::make_unique(2); 
       co_await Something2(); 
       // 3 
   } 

   auto p3 = std::make_unique(3); 
   p.return_void(); 

   co_await p.final_suspend(); 
   // 4 
} 

https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://msrc-blog.microsoft.com/2020/08/17/control-flow-guard-for-clang-llvm-and-rust/
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Resume Destroy

goto 1 destruct p

goto 2 destruct p1 and p

goto 3 destruct p2, p1, and p

goto 4 destruct p3, p1, and p

In practice, the four destroy  functions are going to fall through to each other or at least

jump to each other.

destroy4: 
   lea     rcx, [p3] 
   call    std::unique_ptr<int>::~unique_ptr<int> 
   jmp     destroy2 
destroy3: 
   lea     rcx, [p2] 
   call    std::unique_ptr<int>::~unique_ptr<int> 
destroy2: 
   lea     rcx, [p1] 
   call    std::unique_ptr<int>::~unique_ptr<int> 
destroy1: 
   lea     rcx, [p] 
   call    promise::~promise 

If each of these destruction entry points were a runtime function pointer, there would have to

be a lot of padding between them to get the start-addresses to align on 16-byte boundaries.

On the other hand, if it’s a switch statement or jump table, no such padding is required

because the jump targets are kept in the code segment or the read-only data segment, so they

are safe from corruption via buffer overflow, use-after-free, or type confusion.

In addition to the instruction padding requirements, replacing the function pointers on

suspension is significantly more code:

   ; index-based 
   mov word ptr [rbx].index, 42 ; update the index 

   ; function-pointer-based 
   mov rcx, offset resume2 
   mov qword ptr [rbx].resume, rcx 
   mov rcx, offset destroy2 
   mov qword ptr [rbx].destroy, rcx 

Instead of writing a 16-bit constant, we are writing two 64-bit constants. But the x86-64

cannot write a 64-bit constant directly to memory. You have to pass the value through a

register first.
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And that constant isn’t a constant. It’s a relocatable address, which means that you also have

to add a relocation record for each of those addresses.¹

Furthermore, other 64-bit processors cannot load 64-bit immediate constants. If the function

isn’t too large, you can use instruction-pointer-relative instructions:

   ; index-based 
   movz    r0, #42 
   str     r0, [r1, #index] 

   ; function-pointer-based for small functions 
   adr     x0, resume2 
   str     x0, [r1, #resume] 
   adr     x0, destroy2 
   str     x0, [r1, #destroy] 

   ; function-pointer-based for large functions 
   adrp    x0, resume2 
   add     x0, x0, #PageOffset(resume2) 
   str     x0, [r1, #resume] 
   adrp    x0, destroy2 
   add     x0, x0, #PageOffset(destroy2) 
   str     x0, [r1, #destroy] 

   ; alternate version with constants in memory 
   ; (two pointers = size of four instructions) 
   ldr     x0, [pc, #...]  ; load constant from memory 
   str     x0, [r1, #resume] 
   ldr     x0, [pc, #...]  ; load constant from memory 
   str     x0, [r1, #destroy] 

You don’t need a switch statement in the resume  function, but you pay more at each

suspension point to set up the function pointers. This is trading a fixed cost for a variable

cost. The size of the coroutine switch statement is 34 bytes:

0f b7 43 xx             movzx eax, word ptr [rbx+xx] 
ff c0                   inc   eax 
83 f8 08                cmp   eax, 8 
0f 87 xx xx xx xx       ja    fatal_error 
48 8d 15 xx xx xx xx    lea   rdx, [__ImageBase] 
8b 8c 82 xx xx xx xx    mov   ecx, dword ptr [rdx+rax*4+xxxxxxxx] 
48 03 ca                add   rcx, edx 
ff e1                   jmp   rcx 

The index update is six bytes:

66 c7 43 xx yy yy       mov  word ptr [rbx+xx], yyyy 

The double-address update is 27 bytes:
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48 b9 xx xx xx xx       mov  rcx, xxxxxxxxxxxxxxxx 
     xx xx xx xx 
48 89 0b                mov  [rbx], rcx 
48 b9 xx xx xx xx       mov  rcx, xxxxxxxxxxxxxxxx 
     xx xx xx xx 
48 89 4b 08             mov  [rbx+8], rcx 

You save a 34-byte fixed overhead, but each suspension point costs 21 bytes more. This

means that once you have a second suspension point, you’re at net loss in code size.

A similar calculation plays out for AArch64: The standard resumption dispatcher is eight

instructions:

       ldrh    x0, [x1, #index] 
       add     w0, w0, #1 
       cmp     w0, #8 
       bhi     fatal_error 
       adr     x9, switch_table 
       ldrsw   x8, [x9, w0 uxtw #2] 
       add     x9, x9, x8, lsl #2 
       br      x9 

Updating the index is two instructions, but updating the two pointers is four instructions for

small functions, and six instructions for large functions.² Even if you take the smallest extra

cost of two instructions, it means that once your coroutine has four suspension points,

updating function pointers is going to have a larger net code size.

For all but the simplest coroutines, the index-based version ends up a net win in terms of

code size.

¹ I guess you could be sneaky and if you know that only one suspension point precedes the

one you are about to reach, you could add the delta to the two addresses. But that works only

for straight-line code, and if anything goes slightly wrong, the results can get quite wild.

² If you store the addresses as in-memory constants, then it will cost you eight instructions

plus two relocations.
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