
1/4

January 17, 2022

C# and C++ type aliases and their consequences
devblogs.microsoft.com/oldnewthing/20220117-00

Raymond Chen

The C# and C++ language provide ways to introduce shorter names for things. These

shortcuts do not have their own identities; they merely let one name be used as a shorthand

for the other thing.

// C# 
using Console = System.Console; 

// C++ 
using Project = Contoso::Project; 

The C# and C++ programming languages call these aliases. You are allowing an existing type

to go by a different name. It does not create a new type, and the new name is interchangeable

with the old one.

// C++ 
extern void UpdateProject(Contoso::Project& project); 

void example() 
{ 
   Project project; 
   UpdateProject(project); // this works 
} 

Similarly, when you import a namespace with a using  directive, the names from the other

namespace are visible in your namespace, but they still belong to that other namespace.¹

https://devblogs.microsoft.com/oldnewthing/20220117-00/?p=106167


2/4

// C++ 
namespace Other 
{ 
   struct OtherStruct; 
} 

namespace Mine 
{ 
   using namespace Other; 
} 

void Welcome(Mine::OtherStruct s); 

The signature of the Welcome  function is void Welcome(Other::OtherStruct) , not

void Welcome(Mine::OtherStruct) .

This trick also gives you a way to switch easily between two options:

#ifdef USE_CONTOSO_WIDGET 
using Widget = Contoso::Widget; 
#else 
using Widget = LitWare::Widget; 
#endif 

// code that uses Widget without caring whose widget it is 

The fact that these aliases do not introduce new types means that when you go looking in the

debugger, you will see the symbols decorated with their original names. Which can be both a

good thing and a bad thing.

It’s a good thing if you want the original name to be the one seen by the outside world. For

example, you might create aliases for commonly-used types in your component, but you want

people outside your component to use the original names.



3/4

// component.h 

namespace Component 
{ 
   struct ReversibleWidget; 

   void CheckPolarity(ReversibleWidget const&); 
} 

// component.cpp (implementation) 
#include<component.h> 

using FlipWidget = Component::ReversibleWidget; 

void Component::CheckPolarity(FlipWidget const& widget) 
{ 
   ... do stuff ... 
} 

Inside your component, you’d rather just call it a FlipWidget , because that was the

internal code name when the product was being developed, and then later, management

decided that its public name should be ReversibleWidget . You can create an alias that lets

you continue using your internal code name, so you don’t have to perform a massive search-

and-replace across the entire code base (and deal with all the merge conflicts that will

inevitably arise).

That the symbols are decorated with the original names can be a bad thing if the original

name is an unwieldy mess, which is unfortunately the case with many classes in the C++

standard library.

In the C++ standard library, string  is an alias for basic_string<char,

std::char_traits<char>, std::allocator<char> > ,² so a function like

void FillLookupTable(std::map<std::string, std::string>& table); 

formally has the signature (deep breath)

FillLookupTable(std::map<std::basic_string<char, std::char_traits<char>, 
std::allocator<char> >, std::basic_string<char, std::char_traits<char>, 
std::allocator<char> >, std::less<std::basic_string<char, std::char_traits<char>, 
std::allocator<char> > >, std::allocator<std::pair<std::basic_string<char, 
std::char_traits<char>, std::allocator<char> > const, std::basic_string<char, 
std::char_traits<char>, std::allocator<char> > > > >&): 

Good luck typing that into a debugger.

¹ The fact that they remain in the original namespace has consequences for argument-

dependent lookup:

https://en.cppreference.com/w/cpp/language/adl


4/4

namespace X 
{ 
   struct S {}; 
   void fiddle(S const&); 
} 

namespace Y 
{ 
   using namespace X; 
   void fiddle(S const&); 
} 

void test() 
{ 
   Y::S s; 
   fiddle(s); // X::fiddle, not Y::fiddle 
} 

² What you’re seeing is a combination of the type alias and the template default parameters.

Raymond Chen

Follow

 

 

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

