
1/4

January 20, 2022

The mystery of the crash that seems to be on a std::move
operation

devblogs.microsoft.com/oldnewthing/20220120-00

Raymond Chen

A customer was encountering a crash that appeared only on the ARM version of their

program. Here’s a simplified version:

void polarity_test(std::shared_ptr<Test> test)
{
 test->harness->callAndReport([test2 = std::move(test)]() mutable
 {
 test2->reverse_polarity();
 ::resume_on_main_thread([test3 = std::move(test2)]()
 {
 test3->reverse_polarity();
 });
 });
}

They reported that the first line was crashing on the std::move :

 test->harness->callAndReport([test2 = std::move(test)]() mutable

Now, std::move doesn’t actually generate any code. It just changes the reference from an

lvalue reference to an rvalue reference, which is an operation that takes place entirely in the

computer’s mind. There is no code generation to accompany it.

The problem is somewhere else.

Since the problem occurred only on one CPU architecture, it’s possible that there was a bug

in the back-end code generator. But just to be safe, they contacted the compiler front-end

team, the back-end team (for code generation), and the libraries team (for shared_ptr).

I stepped in and pointed out that there was an order-of-evaluation dependency.

 test->harness->callAndReport([test2 = std::move(test)]() mutable

The left part of the statement reads from test . The lambda capture modifies test (by

moving it to the captured variable test2).

https://devblogs.microsoft.com/oldnewthing/20220120-00/?p=106178

2/4

Historically, the order of evaluation of subexpressions is left unspecified for the most part,

although a handful of operations define an order, most notably that short-circuiting

expressions evaluate the first operand before the second (if at all).¹

The traditional expression ordering rules do not require that deciding which function to call

must occur before evaluating the parameters.

The traditional dependency chart looks like this:²

test

↓

operator->

↓

harness

↓

operator-> test2 = std::move(test)

↓ ↓

callAndReport lambda constructed

↓ ↓

function call

Since there is no dependency between the read of test on the left hand side and the

modification of test on the right hand side, the operations could occur in either order.

And then C++17 happened.

C++17 added additional order-of-evaluation rules beyond the traditional ones: In the below

expressions, a is evaluated before b :

Operation Description

a(b) Function call

a[b] Subscript operator

a.*b
 a->*b

Pointer to member

http://open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0145r3.pdf

3/4

a << b
 a >> b

Shifting

b = a
 b op= a

Assignment
 (note: right to left)

Personally, I find it interesting that the standard chose to evaluate the function before the

arguments. In practice, it is more convenient to calculate the arguments first if the function is

identified via pointer-chasing, since that can be done without disturbing many registers.

Anyway, since function calls now evaluate the function before arguments, the order of

evaluation starting in C++17 now requires that the test on the left hand side be evaluated

before the test2 = std::move(test) in the lambda.

So the question came down to what version of the language the customer is compiling with.

The customer came back and said that they were using Visual Studio 2019, but in C++14

mode.

So that explains it.

Next time, we’ll look at potential fixes (beyond “upgrade to C++17”).

¹ The compiler’s freedom to evaluate function arguments in any order leads to a case where

the underlying architecture influences the order of operations. Stack-based parameters are

more likely to be evaluated before register-based parameters: Once you evaluate the value of

a register-based parameter, you have to find a place to keep it while you evaluate the other

parameters. You can try to keep it in the register that will be used to pass the parameter

(good), or you can try to keep it in another register temporarily (okay), or you can spill it and

reload it just before the call (bad). If the other parameters are complicated to calculate, you

may be forced to spill. On the other hand, a stack-based parameter is going to be spilled to

the stack anyway, so you may as well just calculate it and spill it, and you’re done. You don’t

have to burn a register to hold the parameter until the call.

This means that even if the only thing you take into account is the calling convention, the

optimal order of evaluation can vary between x86-32 (no register parameters, except possibly

for this), x86-64/arm (four register parameters), and arm64 (eight register parameters).

² Even though I showed harness as coming after the preceding operator-> in the

traditional ordering, that is not really a rule of the language, but rather an artifact of mental

inlining. What really happened is

test

4/4

↓

operator-> &Test::harness

↓ ↓

operator->*
 (produces harness)

But &Test::harness has no dependencies on anything,

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

