
1/2

January 24, 2022

The MainWindowHandle property is just a guess based
on heuristics

devblogs.microsoft.com/oldnewthing/20220124-00

Raymond Chen

A customer had a program written in Windows Forms that wanted the following behavior:

When the user minimizes the app, it hides the window.

When the user relaunches the app, the second instance finds the existing (hidden)

window and makes it visible again.

They got the “Hide when minimized” part working, but were not having success with the

“Find the existing window and make it visible again.” Here’s their code:

Private Sub RestoreHiddenInstance
 For Each process As Process In Process.GetProcesses()
 If process.ProcessName.StartsWith("Contoso") Then
 If proceess.StartTime <> Process.GetCurrentProcess.StartTime Then
 ShowWindow(process.MainWindowHandle, SW_RESTORE)
 ShowWindow(process.MainWindowHandle, SW_SHOW)
 ShowWindow(process.MainWindowHandle, SW_SHOWDEFAULT)
 SetForegroundWindow(process.MainWindowHandle)
 End If
 End If
 Next
End Sub

They didn’t provide any debugging details about what “didn’t work.” All they said was that it

“didn’t work.”

We noted some time ago that the Main Window Handle property is just a guess based on

heuristics. There is no formal definition of a “main window” for a process. It’s a synthetic

property driven by enumerating all the top-level of the windows that belong to the process

and trying to guess which one is the main one.

And if you go to the reference source, you’ll see how the BCL decides whether a window is the

main window:

https://devblogs.microsoft.com/oldnewthing/20220124-00/?p=106192
https://devblogs.microsoft.com/oldnewthing/20180511-00/?p=98735
https://referencesource.microsoft.com/#System/services/monitoring/system/diagnosticts/ProcessManager.cs,49

2/2

bool IsMainWindow(IntPtr handle)
{
 if (NativeMethods.GetWindow(new HandleRef(this, handle),
 NativeMethods.GW_OWNER) != (IntPtr)0 ||
 !NativeMethods.IsWindowVisible(new Handleref(this, handle)))
 return false;

 return true;
}

According to the BCL heuristics, any unowned visible window is a candidate for being the

“main” window.

Since the Contoso program hid all of its windows, there are no “main” windows as far as the

Main Window Handle property is concerned. The process.Main Window Handle property is

null , and naturally that means that the code doesn’t actually do anything with the main

window of the previous instance.

You need to move away from the heuristic-based window-detection and design something

more deterministic. Here are some ideas.

Give the main window a unique class name like Contoso_Main Window . Enumerate

the top-level windows owned by the previous instance and look for one that has the

correct class name. (This solution won’t work for this particular customer because the

class name for Windows Forms windows cannot be customized.)

Register a custom message like Is Contoso Main Window . Have your main window

respond TRUE to that message, and have the second instance send this message to

each candidate, and see which one returns TRUE .

Create a named shared memory block and put the window handle in it.

Find some other shared data storage that you can use to hold the window handle.

This list is far from exhaustive, but gives you an idea of the sort of thinking you need to

engage in.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

