
1/11

February 7, 2022

On finding the average of two unsigned integers without
overflow

devblogs.microsoft.com/oldnewthing/20220207-00

Raymond Chen

Finding the average of two unsigned integers, rounding toward zero, sounds easy:

unsigned average(unsigned a, unsigned b)
{
 return (a + b) / 2;
}

However, this gives the wrong answer in the face of integer overflow: For example, if

unsigned integers are 32 bits wide, then it says that average(0x80000000U,

0x80000000U) is zero.

If you know which number is the larger number (which is often the case), then you can

calculate the width and halve it:

unsigned average(unsigned low, unsigned high)
{
 return low + (high - low) / 2;
}

There’s another algorithm that doesn’t depend on knowing which value is larger, the U.S.

patent for which expired in 2016:

unsigned average(unsigned a, unsigned b)
{
 return (a / 2) + (b / 2) + (a & b & 1);
}

The trick here is to pre-divide the values before adding. This will be too low if the original

addition contained a carry from bit 0 to bit 1, which happens if bit 0 is set in both of the

terms, so we detect that case and make the necessary adjustment.

And then there’s the technique in the style known as SWAR, which stands for “SIMD within a

register”.

https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223
https://devblogs.microsoft.com/oldnewthing/20030917-00/?p=42453
https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://patents.google.com/patent/US6007232A/en
https://en.wikipedia.org/wiki/SWAR

2/11

unsigned average(unsigned a, unsigned b)
{
 return (a & b) + (a ^ b) / 2;
}

If your compiler supports integers larger than the size of an unsigned , say because

unsigned is a 32-bit value but the native register size is 64-bit, or because the compiler

supports multiword arithmetic, then you can cast to the larger data type:

unsigned average(unsigned a, unsigned b)
{
 // Suppose "unsigned" is a 32-bit type and
 // "unsigned long long" is a 64-bit type.
 return ((unsigned long long)a + b) / 2;
}

The results would look something like this for processor with native 64-bit registers. (I follow

the processor’s natural calling convention for what is in the upper 32 bits of 64-bit registers.)

3/11

// x86-64: Assume ecx = a, edx = b, upper 32 bits unknown
 mov eax, ecx ; rax = ecx zero-extended to 64-bit value
 mov edx, edx ; rdx = edx zero-extended to 64-bit value
 add rax, rdx ; 64-bit addition: rax = rax + rdx
 shr rax, 1 ; 64-bit shift: rax = rax >> 1
 ; result is zero-extended
 ; Answer in eax

// AArch64 (ARM 64-bit): Assume w0 = a, w1 = b, upper 32 bits unknown
 uxtw x0, w0 ; x0 = w0 zero-extended to 64-bit value
 add x0, w1, uxtw ; 64-bit addition: x0 = x0 + (uint32_t)w1
 ubfx x0, x0, 1, 32 ; Extract bits 1 through 32 from result
 ; (shift + zero-extend in one instruction)
 ; Answer in x0

// Alpha AXP: Assume a0 = a, a1 = b, both in canonical form
 insll a0, #0, a0 ; a0 = a0 zero-extended to 64-bit value
 insll a1, #0, a1 ; a1 = a1 zero-extended to 64-bit value
 addq a0, a1, v0 ; 64-bit addition: v0 = a0 + a1
 srl v0, #1, v0 ; 64-bit shift: v0 = v0 >> 1
 addl zero, v0, v0 ; Force canonical form
 ; Answer in v0

// MIPS64: Assume a0 = a, a1 = b, sign-extended
 dext a0, a0, 0, 32 ; Zero-extend a0 to 64-bit value
 dext a1, a1, 0, 32 ; Zero-extend a1 to 64-bit value
 daddu v0, a0, a1 ; 64-bit addition: v0 = a0 + a1
 dsrl v0, v0, #1 ; 64-bit shift: v0 = v0 >> 1
 sll v0, #0, v0 ; Sign-extend result
 ; Answer in v0

// Power64: Assume r3 = a, r4 = b, zero-extended
 add r3, r3, r4 ; 64-bit addition: r3 = r3 + r4
 rldicl r3, r3, 63, 32 ; Extract bits 63 through 32 from result
 ; (shift + zero-extend in one instruction)
 ; result in r3

// Itanium Ia64: Assume r32 = a, r4 = b, upper 32 bits unknown
 extr r32 = r32, 0, 32 // zero-extend r32 to 64-bit value
 extr r33 = r33, 0, 32 ;; // zero-extend r33 to 64-bit value
 add.i8 r8 = r32, r33 ;; // 64-bit addition: r8 = r32 + r33
 shr r8 = r8, 1 // 64-bit shift: r8 = r8 >> 1

Note that we must ensure that the upper 32 bits of the 64-bit registers are zero, so that any

leftover values in bit 32 don’t infect the sum. The instructions to zero out the upper 32 bits

may be elided if you know ahead of time that they are already zero. This is common on x86-

64 and AArch64 since those architectures naturally zero-extend 32-bit values to 64-bit

values, but not common on Alpha AXP and MIPS64 because those architectures naturally

sign-extend 32-bit values to 64-bit values.

4/11

I find it amusing that the PowerPC, patron saint of ridiculous instructions, has an instruction

whose name almost literally proclaims its ridiculousness: rldicl. (It stands for “rotate left

doubleword by immediate and clear left”.)

For 32-bit processors with compiler support for multiword arithmetic, you end up with

something like this:

https://devblogs.microsoft.com/oldnewthing/20180815-00/?p=99495
https://devblogs.microsoft.com/oldnewthing/20180814-00/?p=99485

5/11

// x86-32
 mov eax, a ; eax = a
 xor ecx, ecx ; Zero-extend to 64 bits
 add eax, b ; Accumulate low 32 bits in eax, set carry on overflow
 adc ecx, ecx ; Accumulate high 32 bits in ecx
 ; ecx:eax = 64-bit result
 shrd eax, ecx, 1 ; Multiword shift right
 ; Answer in eax

// ARM 32-bit: Assume r0 = a, r1 = b
 mov r2, #0 ; r2 = 0
 adds r0, r1, r2 ; Accumulate low 32 bits in r0, set carry on overflow
 adc r1, r2, #0 ; Accumulate high 32 bits in r1
 ; r1:r0 = 64-bit result
 lsrs r1, r1, #1 ; Shift high 32 bits right one position
 ; Bottom bit goes into carry
 rrx r0, r0 ; Rotate bottom 32 bits right one position
 ; Carry bit goes into top bit
 ; Answer in r0

// SH-3: Assume r4 = a, r5 = b
 ; (MSVC 13.10.3343 code generation here isn't that great)
 clrt ; Clear T flag
 mov #0, r3 ; r3 = 0, zero-extended high 32 bits of a
 addc r5, r4 ; r4 = r4 + r5 + T, overflow goes into T bit
 mov #0, r2 ; r2 = 0, zero-extended high 32 bits of b
 addc r3, r2 ; r2 = r2 + r3 + T, calculate high 32 bits
 ; r3:r2 = 64-bit result
 mov #31, r3 ; Prepare for left shift
 shld r3, r2 ; r2 = r2 << r3
 shlr r4 ; r4 = r4 >> 1
 mov r2, r0 ; r0 = r2
 or r4, r0 ; r0 = r0 | r4
 ; Answer in r0

// MIPS: Assume a0 = a, a1 = b
 addu v0, a0, a1 ; v0 = a0 + a1
 sltu a0, v0, a0 ; a0 = 1 if overflow occurred
 sll a0, 31 ; Move to bit 31
 srl v0, v0, #1 ; Shift low 32 bits right one position
 or v0, v0, a0 ; Combine the two parts
 ; Answer in v0

// PowerPC: Assume r3 = a, r4 = b
 ; (gcc 4.8.5 -O3 code generation here isn't that great)
 mr r9, r3 ; r9 = r3 (low 32 bits of 64-bit a)
 mr r11, r4 ; r11 = r4 (low 32 bits of 64-bit b)
 li r8, #0 ; r8 = 0 (high 32 bits of 64-bit a)
 li r10, #0 ; r10 = 0 (high 32 bits of 64-bit b)
 addc r11, r11, r9 ; r11 = r11 + r9, set carry on overflow
 adde r10, r10, r8 ; r10 = r10 + r8, high 32 bits of 64-bit result
 rlwinm r3, r10, 31, 1, 31 ; r3 = r10 >> 1

6/11

 rlwinm r9, r11, 31, 0, 0 ; r9 = r1 << 31
 or r3, r3, r9 ; Combine the two parts
 ; Answer in r3

// RISC-V: Assume a0 = a, a1 = b
 add a1, a0, a1 ; a1 = a0 + a1
 sltu a0, a1, a0 ; a0 = 1 if overflow occurred
 slli a0, a0, 31 ; Shift to bit 31
 slri a1, a1, 1 ; a1 = a1 >> 1
 or a0, a0, a1 ; Combine the two parts
 ; Answer in a0

Or if you have access to SIMD registers that are larger than the native register size, you can

do the math there. (Though crossing the boundary from general-purpose register to SIMD

register and back may end up too costly.)

// x86-32
unsigned average(unsigned a, unsigned b)
{
 auto a128 = _mm_cvtsi32_si128(a);
 auto b128 = _mm_cvtsi32_si128(b);
 auto sum = _mm_add_epi64(a128, b128);
 auto avg = _mm_srli_epi64(sum, 1);
 return _mm_cvtsi128_si32(avg);
}

 movd xmm0, a ; Load a into bottom 32 bits of 128-bit register
 movd xmm1, b ; Load b into bottom 32 bits of 128-bit register
 paddq xmm1, xmm0 ; Add as 64-bit integers
 psrlq xmm1, 1 ; Shift 64-bit integer right one position
 movd eax, xmm1 ; Extract bottom 32 bits of result

// 32-bit ARM (A32) has an "average" instruction built in
unsigned average(unsigned a, unsigned b)
{
 auto a64 = vdup_n_u32(a);
 auto b64 = vdup_n_u32(b);
 auto avg = vhadd_u32(a64, b64); // hadd = half of add (average)
 return vget_lane_u32(avg);
}

 vdup.32 d16, r0 ; Broadcast r0 into both halves of d16
 vdup.32 d17, r1 ; Broadcast r1 into both halves of d17
 vhadd.u32 d16, d16, d17 ; d16 = average of d16 and d17
 vmov.32 r0, d16[0] ; Extract result

But you can still do better, if only you had access to better intrinsics.

In processors that support add-with-carry, you can view the sum of register-sized integers as

a (N + 1)-bit result, where the bonus bit N is the carry bit. If the processor also supports

rotate-right-through-carry, you can shift (N + 1)-bit result right one place, recovering the

7/11

correct average without losing the bit that overflows.

// x86-32
 mov eax, a
 add eax, b ; Add, overflow goes into carry bit
 rcr eax, 1 ; Rotate right one place through carry

// x86-64
 mov rax, a
 add rax, b ; Add, overflow goes into carry bit
 rcr rax, 1 ; Rotate right one place through carry

// 32-bit ARM (A32)
 mov r0, a
 adds r0, b ; Add, overflow goes into carry bit
 rrx r0 ; Rotate right one place through carry

// SH-3
 clrt ; Clear T flag
 mov a, r0
 addc b, r0 ; r0 = r0 + b + T, overflow goes into T bit
 rotcr r0 ; Rotate right one place through carry

While there is an intrinsic for the operation of “add two values and report the result as well as

carry”, we don’t have one for “rotate right through carry”, so we can get only halfway there:

unsigned average(unsigned a, unsigned b)
{
#if defined(_MSC_VER)
 unsigned sum;
 auto carry = _addcarry_u32(0, a, b, &sum);
 return _rotr1_carry(sum, carry); // missing intrinsic!
#elif defined(__clang__)
 unsigned carry;
 auto sum = _builtin_adc(a, b, 0, &carry);
 return _builtin_rotateright1throughcarry(sum, carry); // missing intrinsic!
#elif defined(__GNUC__)
 unsigned sum;
 auto carry = __builtin_add_overflow(a, b, &sum);
 return _builtin_rotateright1throughcarry(sum, carry); // missing intrinsic!
#else
#error Unsupported compiler.
#endif
}

We’ll have to fake it, alas. Here’s one way:

8/11

unsigned average(unsigned a, unsigned b)
{
#if defined(_MSC_VER)
 unsigned sum;
 auto carry = _addcarry_u32(0, a, b, &sum);
 return (sum / 2) | (carry << 31);
#elif defined(__clang__)
 unsigned carry;
 auto sum = _builtin_addc(a, b, 0, &carry);
 return (sum / 2) | (carry << 31);
#elif defined(__GNUC__)
 unsigned sum;
 auto carry = __builtin_add_overflow(a, b, &sum);
 return (sum / 2) | (carry << 31);
#else
#error Unsupported compiler.
#endif
}

// _MSC_VER
 mov ecx, a
 add ecx, b ; Add, overflow goes into carry bit
 setc al ; al = 1 if carry set
 shr ecx, 1 ; Shift sum right one position
 movzx eax, al ; eax = 1 if carry set
 shl eax, 31 ; Move to bit 31
 or eax, ecx ; Combine
 ; Result in eax

// __clang__
 mov ecx, a
 add ecx, b ; Add, overflow goes into carry bit
 setc al ; al = 1 if carry set
 shld eax, ecx, 31 ; Shift left 64-bit value
 ; Result in eax

// __clang__ with ARM-Thumb2
 adds r0, r0, r1 ; Calculate sum with flags
 blo nope ; Jump if carry clear
 movs r1, #1 ; Carry is 1
 lsls r1, r1, #31 ; Move carry to bit 31
 lsrs r0, r0, #1 ; Shift sum right one position
 adcs r0, r0, r1 ; Combine
 b done
nope:
 movs r1, #0 ; Carry is 0
 lsrs r0, r0, #1 ; Shift sum right one position
 adds r0, r0, r1 ; Combine
done:

// __GNUC__

9/11

 mov eax, a
 xor edx, edx ; Preset edx = 0 for later setc
 add eax, b ; Add, overflow goes into carry bit
 setc dl ; dl = 1 if carry set
 shr eax, 1 ; Shift sum right one position
 shl edx, 31 ; Move carry to bit 31
 or eax, edx ; Combine

I considered trying a sneaky trick: Use the rotation intrinsic. (gcc doesn’t have a rotation

intrinsic, so I couldn’t try it there.)

unsigned average(unsigned a, unsigned b)
{
#if defined(_MSC_VER)
 unsigned sum;
 auto carry = _addcarry_u32(0, a, b, &sum);
 sum = (sum & ~1) | carry;
 return _rotr(sum, 1);
#elif defined(__clang__)
 unsigned carry;
 sum = (sum & ~1) | carry;
 auto sum = __builtin_addc(a, b, 0, &carry);
 return __builtin_rotateright32(sum, 1);
#else
#error Unsupported compiler.
#endif
}

// _MSC_VER
 mov ecx, a
 add ecx, b ; Add, overflow goes into carry bit
 setc al ; al = 1 if carry set
 and ecx, -2 ; Clear bottom bit
 movzx ecx, al ; Zero-extend byte to 32-bit value
 or eax, ecx ; Combine
 ror ear, 1 ; Rotate right one position
 ; Result in eax

// __clang__
 mov ecx, a
 add ecx, b ; Add, overflow goes into carry bit
 setc al ; al = 1 if carry set
 shld eax, ecx, 31 ; Shift left 64-bit value

// __clang__ with ARM-Thumb2
 movs r2, #0 ; Prepare to receive carry
 adds r0, r0, r1 ; Calculate sum with flags
 adcs r2, r2 ; r2 holds carry
 lsrs r0, r0, #1 ; Shift sum right one position
 lsls r1, r2, #31 ; Move carry to bit 31
 adds r0, r1, r0 ; Combine

10/11

Mixed results. For _MSC_VER , the code generation got worse. For __clang__ for ARM-

Thumb2, the code generation got better. And for __clang__ for x86, the compiler realized

that it was the same as before, so it just used the previous codegen!

Bonus chatter: And while I’m here, here are sequences for processors that don’t have

rotate-right-through-carry.

// AArch64 (A64)
 mov x0, a
 adds x0, x1, b ; Add, overflow goes into carry bit
 addc x1, xzr, xzr ; Copy carry to x1
 extr x0, x1, x0, 1 ; Extract bits 64:1 from x1:x0
 ; Answer in x0

// Alpha AXP: Assume a0 = a, a1 = b, both 64-bit values
 addq a0, a1, v0 ; 64-bit addition: v0 = a0 + a1
 cmpult a0, v0, a0 ; a0 = 1 if overflow occurred
 srl v0, #1, v0 ; 64-bit shift: v0 = v0 >> 1
 sll a0, #63, a0 ; 64-bit shift: a0 = a0 << 63
 or a0, v0, v0 ; v0 = v0 | a0
 ; Answer in v0

// Itanium Ia64: Assume r32 = a, r33 = b, both 64-bit values
 add r8 = r32, r33 ;; // 64-bit addition: r8 = r32 + r33
 cmp.ltu p6, p7 = r8, r33 ;; // p6 = true if overflow occurred
(p6) addl r9 = 1, r0 // r9 = 1 if overflow occurred
(p7) addl r9 = 0, r0 ;; // r9 = 0 if overflow did not occur
 shrp r8 = r9, r8, 1 // r8 = extract bits 64:1 from r9:r8
 // Answer in r8

// MIPS: Same as multiprecision version

// PowerPC: Assume r3 = a, r4 = b
 addc r3, r3, r4 ; Accumulate low 32 bits in r3, set carry on overflow
 adde r5, r4, r4 ; Shift carry into bottom bit of r5 (other bits
garbage)
 rlwinm r3, r3, 31, 1, 31 ; Shift r3 right by one position
 rlwinm r5, r5, 31, 0, 0 ; Shift bottom bit of r5 to bit 31
 or r3, r5, r5 ; Combine the two parts

// RISC-V: Same as multiprecision version

Bonus chatter: C++20 adds a std::midpoint function that calculates the average of two

values (rounding toward a).

Bonus viewing: std::midpoint? How hard could it be?

Update: I was able to trim an instruction off the PowerPC version by realizing that only the

bottom bit of r5 participates in the rlwinm , so the other bits can be uninitialized garbage.

For the uninitialized garbage, I used r4 , which I know can be consumed without a stall

https://www.youtube.com/watch?v=sBtAGxBh-XI

11/11

because the addc already consumed it.

Here’s the original:

// PowerPC: Assume r3 = a, r4 = b
 li r5, #0 ; r5 = 0 (accumulates high 32 bits)
 addc r3, r3, r4 ; Accumulate low 32 bits in r3, set carry on overflow
 addze r5, r5 ; Accumulate high bits in r5
 rlwinm r3, r3, 31, 1, 31 ; Shift r3 right by one position
 rlwinm r5, r5, 31, 0, 0 ; Shift bottom bit of r5 to bit 31
 or r3, r5, r5 ; Combine the two parts

Update 2: Peter Cordes pointed out that an instruction can also be trimmed from the

AArch64 version by using the uxtw extended register operation to combine a uxtw with

an add . Here’s the original:

// AArch64 (ARM 64-bit): Assume w0 = a, w1 = b, upper 32 bits unknown
 uxtw x0, w0 ; x0 = w0 zero-extended to 64-bit value
 uxtw x1, w1 ; x1 = w1 zero-extended to 64-bit value
 add x0, x1 ; 64-bit addition: x0 = x0 + x1
 ubfx x0, x0, 1, 32 ; Extract bits 1 through 32 from result
 ; (shift + zero-extend in one instruction)
 ; Answer in x0

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

