
1/4

March 2, 2022

How can I detect whether the system has a keyboard
attached? On the GetRawInputDeviceList function

devblogs.microsoft.com/oldnewthing/20220302-00

Raymond Chen

Last time, we saw that the instructions for unlocking the PC vary depending on whether a

keyboard is attached. So how do you detect whether a keyboard is attached?

The Get Raw Input Device List function gives you the raw input devices that are registered

with the input system. Let’s write a little program to count how many of them are keyboards.

https://devblogs.microsoft.com/oldnewthing/20220302-00/?p=106303
https://devblogs.microsoft.com/oldnewthing/20220301-00/?p=106300

2/4

#include <windows.h>
#include <stdio.h> // Horrors! Mixing C and C++!
#include <vector>

[[noreturn]] void throw_win32_error(DWORD error)
{
 // replace with your desired win32 exception object
 std::terminate();
}

std::vector<RAWINPUTDEVICELIST> GetRawInputDevices()
{
 UINT deviceCount = 0;
 if (GetRawInputDeviceList(nullptr, &deviceCount,
 sizeof(devices[0]) != 0) {
 throw_win32_error(GetLastError());
 }

 std::vector<RAWINPUTDEVICELIST> devices(deviceCount);
 while (deviceCount != 0) {
 UINT actualDeviceCount = GetRawInputDeviceList(
 devices.data(), &deviceCount,
 sizeof(devices[0]);
 if (actualDeviceCount != (UINT)-1) {
 devices.resize(actualDeviceCount);
 return devices;
 }
 DWORD error = GetLastError();
 if (error != ERROR_INSUFFICIENT_BUFFER) {
 throw_win32_error(error);
 }
 devices.resize(deviceCount);
 }
}

The behavior of the Get Raw Input Device List() is very strange. Here it is in a table:

Scenario Buffer pointer
Size on
entry

Size on
return Return value

Query number of
devices

nullptr ignored required size 0

Request data (failed) Non- nullptr provided
size

required size 0xFFFFFFFF

Request data
(succeeded)

Non- nullptr provided
size

unchanged actual size

3/4

The Get Raw Input Devices() function starts by using the Query number of devices pattern

to get an initial guess as to the number of devices, and then goes into the usual loop of calling

a function (in this case Get Raw Input Device List()) to fill a buffer, resizing the buffer

based on the result from the previous query, until you finally get what you want. There is a

weird edge case where there are no input devices: A vector resized to zero is permitted to

return data() == nullptr , but that would cause our Request data to be misinterpreted as

a Query number of devices, so we skip the loop if the device count is zero.

Most people don’t write the loop. They just call the function twice, once to get the count, and

once to fill the buffer. But it means that if a device is attached between the two calls, the code

fails because the count changed. You need to make it a loop so you can adapt to changes that

occur behind your back.

Other common oversights when using the Get Raw Input Device List() function are missing

the case where there are no devices, or the case where a device is removed during the loop, so

that the Request data succeeds but returns a value smaller than the provided size.

If we start with a nonzero initial guess, we can get rid of the preliminary portion of the

function and go straight to the loop, thereby avoiding the weird “I’m going to return success

even though you didn’t get anything” first row of the above table.

std::vector<RAWINPUTDEVICELIST> GetRawInputDevices()
{
 UINT deviceCount = 10; // initial guess, must be nonzero
 std::vector<RAWINPUTDEVICELIST> devices(deviceCount);
 while (deviceCount != 0) {
 UINT actualDeviceCount = GetRawInputDeviceList(
 devices.data(), &deviceCount,
 sizeof(devices[0]);
 if (actualDeviceCount != (UINT)-1) {
 devices.resize(actualDeviceCount);
 return devices;
 }
 DWORD error = GetLastError();
 if (error != ERROR_INSUFFICIENT_BUFFER) {
 std::terminate(); // throw something
 }
 devices.resize(deviceCount);
 }
}

Now we get to use this function to study the raw input devices.

4/4

int main(int argc, char** argv)
{
 auto devices = GetRawInputDevices();
 int mouseCount = 0;
 int keyboardCount = 0;
 int otherCount = 0;
 for (auto const& device : devices) {
 switch (device.dwType)
 {
 case RIM_TYPEKEYBOARD: keyboardCount++; break;
 case RIM_TYPEMOUSE: mouseCount++; break;
 default: otherCount++; break;
 }
 }
 printf("There are %d keyboards, %d mice, and %d other things\n",
 keyboardCount, mouseCount, otherCount);
 return 0;
}

We walk through the list and tally up how many devices there are of each kind.

If you just want a “yes or no” answer about whether there is a keyboard attached, you can ask

KeyboardCapabilities.KeyboardPresent:

#include <stdio.h> // Horrors! Mixing C and C++!
#include <winrt/Windows.Devices.Input.h>

int main(int argc, char** argv)
{
 winrt::init_apartment();
 winrt::Windows::Devices::Input::KeyboardCapabilities capabilities;
 printf("KeyboardPresent = %d\n", capabilities.KeyboardPresent());
 return 0;
}

The Keyboard Present property identifies keyboards by… enumerating the raw input

devices and seeing if any of them is a keyboard.

This all sounds good, except that a lot of devices report themselves as keyboards, even though

they aren’t keyboards in the usual sense. Next time, we’ll see if we can filter those guys out.

Raymond Chen

Follow

https://docs.microsoft.com/uwp/api/Windows.Devices.Input.KeyboardCapabilities.KeyboardPresent
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

