
1/5

March 16, 2022

Reducing chattiness by querying for multiple interfaces
at once, part 2

devblogs.microsoft.com/oldnewthing/20220316-00

Raymond Chen

Last time, we saw how we can use MULTI_QI to get multiple interfaces packed into a single

server call. This saves us from having to issue separate Query Interface calls, avoiding a

round-trip call to the server for each interface.

It was relatively easy for us to do this in our sample because all of the Query Interface calls

were in the same function. But what if they are spread out?

// Error checking elided for expository purposes.

void Gadget::DoSomethingWithWidget()
{
 // Create a widget.
 wil::com_ptr<IWidget> widget;
 CoCreateInstance(CLSID_Widget, nullptr,
 CLSCTX_LOCAL_SERVER, IID_PPV_ARGS(&widget));

 LoadWidgetWithSite(widget.get(), site, m_fileName);

 // Ready to do widget things.
 widget->DoSomething();
}

void LoadWidgetWithSite(IWidget* widget,
 IUnknown* site, PCWSTR fileName)
{
 // Set the site.
 wil::com_ptr<IObjectWithSite> objectWithSite;
 widget->QueryInterface(IID_PPV_ARGS(&objectWithSite));
 objectWithSite->SetSite(site);

 // Load it from the file.
 wil::com_ptr<IPersistFile> persistFile;
 widget->QueryInterface(IID_PPV_ARGS(&persistFile));
 persistFile->Load(fileName, STGM_READ);
}

https://devblogs.microsoft.com/oldnewthing/20220316-00/?p=106353
https://devblogs.microsoft.com/oldnewthing/20220315-00/?p=106350

2/5

If we want to take advantage of Co Create Instance Ex and MULTI_QI , it looks like we’ll

have to pass those pre-queried interfaces to Load Widget With Site , which makes it more

unwieldy:

// Error checking elided for expository purposes.

void Gadget::DoSomethingWithWidget()
{
 // Create a widget and prefetch the interfaces.
 MULTI_QI mqi[3] = {
 { &__uuidof(IWidget), nullptr, 0 },
 { &__uuidof(IObjectWithSite), nullptr, 0 },
 { &__uuidof(IPersistFile), nullptr, 0 },
 };
 HRESULT hr = CoCreateInstanceEx(
 CLSID_Widget, nullptr, CLSCTX_LOCAL_SERVER,
 nullptr, 3, mqi);

 wil::com_ptr<IWidget> widget;
 widget.attach(mqi[0].pItf);

 wil::com_ptr<IObjectWithSite> objectWithSite;
 objectWithSite.attach(mqi[1].pItf);

 wil::com_ptr<IPersistFile> persistFile;
 persistFile.attach(mqi[2].pItf);

 if (hr != S_OK) {
 // Failed to get at least one interface.
 return;
 }

 LoadWidgetWithSite(widget.get(),
 objectWithSite.get(), site,
 persistFile.get(), m_fileName);

 // Ready to do widget things.
 widget->DoSomething();
}

void LoadWidgetWithSite(IWidget* widget,
 IObjectWithSite* objectWithSite, IUnknown* site,
 IPersistFile* persistFile, PCWSTR fileName)
{
 // Set the site.
 objectWithSite->SetSite(site);

 // Load it from the file.
 persistFile->Load(fileName, STGM_READ);
}

3/5

But it turns out that you don’t have to rewrite all of your methods. All you have to do is

prefetch the interfaces and throw them away!

// Error checking elided for expository purposes.

void Gadget::DoSomethingWithWidget()
{
 // Create a widget and prefetch the interfaces.
 MULTI_QI mqi[3] = {
 { &__uuidof(IWidget), nullptr, 0 },
 { &__uuidof(IObjectWithSite), nullptr, 0 },
 { &__uuidof(IPersistFile), nullptr, 0 },
 };
 HRESULT hr = CoCreateInstanceEx(
 CLSID_Widget, nullptr, CLSCTX_LOCAL_SERVER,
 nullptr, 3, mqi);

 wil::com_ptr<IWidget> widget;
 widget.attach(mqi[0].pItf);

 if (mqi[1].pItf) mqi[1].pItf->Release();
 if (mqi[2].pItf) mqi[2].pItf->Release();

 if (hr != S_OK) {
 // Failed to get at least one interface.
 return;
 }

 // The rest is the same as the non-MULTI_QI version.
 LoadWidgetWithSite(widget.get(), site, m_fileName);

 // Ready to do widget things.
 widget->DoSomething();
}

void LoadWidgetWithSite(IWidget* widget,
 IUnknown* site, PCWSTR fileName)
{
 // Set the site.
 wil::com_ptr<IObjectWithSite> objectWithSite;
 widget->QueryInterface(IID_PPV_ARGS(&objectWithSite));
 objectWithSite->SetSite(site);

 // Load it from the file.
 wil::com_ptr<IPersistFile> persistFile;
 widget->QueryInterface(IID_PPV_ARGS(&persistFile));
 persistFile->Load(fileName, STGM_READ);
}

4/5

Even though we threw the prefetched interfaces away, they have been cached in the proxy,

and future calls to Query Interface will return the cached value instead of sending a call all

the way back out to the server.

The proxy also caches negative results, so if we had an optional interface, the proxy will

remember that a query for that interface failed in the past, so when you ask for it again, it will

return the error from the earlier Query Interface without going to the server.

The rules for IUnknown regarding interface stability ensure that it is valid to cache the

results of earlier Query Interface calls.¹

Even the Release calls on the interfaces won’t result in a call out to the server: Only the

final Release of a proxy results in a call to the server, and we still have an active reference

in widget . (We took advantage of this behavior a little while ago.)

Mind you, the MULTI_QI structure is rather awkward to manage. Maybe we can use some

C++ magic to make it easier. We’ll look at that next time.

¹ You might say that Query Interface “collapses the wave function” for interface detection.

If your object is never asked “Do you support IWidget ?” then it can exist in a quantum

superposition state of “supports IWidget /doesn’t support IWidget .” But once somebody

asks, the object must decide which way it wants to be, and has to stick with that decision for

the remainder of its lifetime.

You can take advantage of the “quantum superposition state” in your objects. For example,

your Tool object that might be an IWidget , or it might be an IGadget , depending on

how it is configured. The client can reconfigure the Tool all it wants, but once it asks “Did I

make a Widget?”, the configuration is locked in. In practice, you see this pattern in the cases

where the configuration is done by something like IPersistStream .

wil::com_ptr<IPersistStream> persist;
CoCreateInstance(CLSID_Tool, ..., IID_PPV_ARGS(&persist));

// The tool doesn't know what it is yet.

persist->Load(stream);

// The tool can delay the decision until somebody finally asks,
// "Are you a Widget?"

wil::com_ptr<IWidget> widget;
persist->QueryInterface(IID_PPV_ARGS(&widget));

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20220223-00/?p=106282
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

5/5

