
1/4

April 18, 2022

The x86 architecture is the weirdo, part 2
devblogs.microsoft.com/oldnewthing/20220418-00

Raymond Chen

Some time ago I noted that The x86 architecture is the weirdo. (And by x86 I mean

specifically x86-32.) I was reminded by the compiler folks of another significant place where

the x86 architecture is different from all the others, and that’s in how Windows structured

exceptions are managed.

On Windows, all the other architectures track exception handling by using unwind codes and

other information declared as metadata. If you step through a function on any other

architecture, you won’t see any instructions related to exception handling. Only when an

exception occurs does the system look up the instruction pointer in the exception-handling

information in the metadata, and use that to decide what to do: Which exception handler

should run? What objects need to be destructed? That sort of thing.

But the x86 is the weirdo. On Windows, the x86 tracks exception information at runtime.

When control enters a function that needs to deal with exceptions (either because it it wants

to handle the exception, or just because it wants to run destructors when an exception is

thrown out of the function), the code must create an entry in a linked list threaded through

the stack and anchored by the value in fs:[0] . In the Microsoft Visual C++

implementation, the linked list node also contains an integer which represents the current

progress through the function, and that integer is updated whenever there is a change to the

list of objects requiring destruction. It is updated immediately after the construction of an

object completes, and immediately before the destruction of an object commences.

This special integer is a real pain in the neck, because the optimizer sees it as a dead store

and really wants to optimize it out. Indeed sometimes, it really is a dead store, but sometimes

it isn’t.

Consider:

https://devblogs.microsoft.com/oldnewthing/20220418-00/?p=106489
https://devblogs.microsoft.com/oldnewthing/20040914-00/?p=37873
https://devblogs.microsoft.com/oldnewthing/20181228-00/?p=100585

2/4

struct S { S(); ~S(); };

void f1();
void f2();

S g()
{
 S s1;
 f1();
 S s2;
 f2();
 return S();
}

The code generation for this function goes like this:

3/4

struct ExceptionNode
{
 ExceptionNode* next;
 int (__stdcall *handler)(PEXCEPTION_POINTERS);
 int state;
};

S g()
{
 // Create a new node
 ExceptionNode node;
 node.next = fs:[0];
 node.handler = exception_handler_function;
 node.state = -1; // nothing needs to be destructed

 // Make it the new head of the linked list
 fs:[0] = &node;

 construct s1;
 node.state = 0; // s1 needs to be destructed

 f1();

 construct s2;
 node.state = 1; // s1 and s2 need to be destructed

 f2();

 construct return value;
 node.state = 2; // s1, s2, and return value need to be destructed

 node.state = 3; // s1 and return value need to be destructed
 destruct s2;

 node.state = 4; // return value needs to be destructed
 destruct s1;
}

The unwind state variable is updated whenever the list of “objects requiring destruction”

changes. As far as the optimizer is concerned, all of these updates to state look like dead

stores, since it seems that nobody reads them.

Aha, but somebody does read them: The exception_handler_function . The problem is

that the call to the exception_handler_function is invisible: It is called when an

exception is thrown by the f1() or f2() function, or by the destructor of the S objects.¹

But wait, some of these really are dead stores. For example, the assignments of 2 to

node.state is a dead store, because it is immediately followed by a store of 3, and there is

nothing in between, so no exception could occur while the value is 2. Similarly, the store of 3

4/4

is dead because the destructor of S is implicitly noexcept .¹ And the store of 4 is dead for

the same reason: No exception can occur when destructing s1 .

Further dead store elimination becomes possible if f1 or f2 are changed to noexcept .

So the optimizer is in a tricky spot here: It wants to eliminate dead stores, but the simple

algorithm for identifying dead stores doesn’t work here because of the potential for

exceptions.

Coroutines make this even worse: When a coroutine suspends, the exception-handling node

needs to be copied from the stack into the coroutine frame, and then removed from the stack

frame. And when the coroutine resumes, the state needs to be copied from the coroutine

frame back into the stack, and linked into the chain of exception handlers.

Knowing exactly when to do this unlinking and relinking is tricky, because you still have to

catch exceptions that occur in await_suspend and store them in the promise. But we

learned that await_suspend is fragile because the coroutine may have resumed and run to

completion before await_suspend returns.

void await_suspend(coroutine_handle<> handle)
{
 arrange_for_resumption(handle);
 throw oops; // who catches this?
}

The language says that the thrown exception is caught by the coroutine framework, which

calls promise.unhandled_exception() . But the promise may no longer exist!

Dealing with all these crazy edge cases makes exception handling on x86, and particularly

exception handling on x86 in coroutines, quite a complicated undertaking.

Bonus reading: Zero-cost exceptions aren’t zero cost.

¹ Destructors default to noexcept if no members or base classes have potentially-throwing

destructors, but you can mark your destructor as potentially-throwing,² and then exceptions

thrown from destructors become something the compiler has to worry about.

² Please don’t do that.

Raymond Chen

Follow

https://devblogs.microsoft.com/cppblog/cpp20-coroutine-improvements-in-visual-studio-2019-version-16-11/
https://devblogs.microsoft.com/oldnewthing/20220228-00/?p=106296
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

