
1/35

[RE026] A Deep Dive into Zloader – the Silent Night
blog.vincss.net/re026-a-deep-dive-into-zloader-the-silent-night/

 25/04/2022

1. Overview

Zloader, a notorious banking trojan also known as Terdot or Zbot. This trojan was first
discovered in 2016, and over time its distribution number has also continuously increased.
The Zloader’s code is said to be built on the leaked source code of the famous ZeuS
malware. In 2011, when source code of ZeuS was made public and since then, it has been
used in various malicious code samples.

Zloader has all the standard functionality of a trojan such as being able to fetch information
from browsers, stealing cookies and passwords, capturing screenshots, etc. and for making
analysis difficult, it applies advanced techniques, including code obfuscation and string
encryption, masking Windows APIs call. Recently, CheckPoint expert published an analysis
of a Zloader distribution campaign whereby the infection exploited Microsoft’s digital
signature checking process. In addition, Zloader has also recently partnered with different
ransomware gangs are Ryuk and Egregor. This can indicate that the actors behind this
malware are still looking for different ways to upgrade it to bypass the defenses. Here is the
ranking of Zloader according to the rating from the AnyRun site:

Source: https://any.run/malware-trends/zloader

Most recently, multiple telecommunication providers and cybersecurity firms worldwide
partnered with Microsoft’s security researchers throughout the investigative effort, including
ESET, Black Lotus Labs, Palo Alto Networks’ Unit 42, and Avast. They took legal and
technical steps to disrupt the ZLoader botnet, seizing control of 65 domains that were used
to control and communicate with the infected hosts.

In this article, we will provide detailed analysis and techniques that Zloader uses, including:

How to unpack to dump Zloader Core Dll.
The technique that Zloader makes difficult as well as time consuming in the analysis
process.

https://blog.vincss.net/re026-a-deep-dive-into-zloader-the-silent-night/
https://research.checkpoint.com/2022/can-you-trust-a-files-digital-signature-new-zloader-campaign-exploits-microsofts-signature-verification-putting-users-at-risk/
https://www.phishlabs.com/blog/surge-in-zloader-attacks-observed/
https://any.run/malware-trends/zloader
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgxQCh5PenGkblmzyND4WyDVMjr_ZUoH4s5GUWOYhtirACNHVc01b7uTK8AkpoRuBFjRPrmdvchi8DNst60USYk3q-jvTyjkEbNet60bT6BgzUelFqd1Tp2RwF0omoNI0PWseRap9vWC4LtkxGYW6Hd_oO1ZI2Ap3BRIM9zBo86rt35mxhN_NYs-TQrQg/s549/image1.png
https://any.run/malware-trends/zloader
https://blogs.microsoft.com/on-the-issues/2022/04/13/zloader-botnet-disrupted-malware-ukraine/


2/35

Decrypt strings used by Zloader by using both IDAPython and AppCall methods.
Apply AppCall to recover the Windows API calls.
Process Injection technique that Zloader uses to inject into the msiexec.exe process.
Decrypt configuration information related to C2s addresses.
How Zloader collects and saves information in the Registry.
The Persistence technique.

The analyzed sample used in the article:
034f61d86de99210eb32a2dca27a3ad883f54750c46cdec4fcc53050b2f716eb

2. Unpacking Zloader Core Dll

First, check the sample with Nauz File Detector:

By collecting and combining information about sections from ExeInfo, entropy in DiE as well
as the size of the DLL file, we can confirm that this DLL is packed:

https://www.virustotal.com/gui/file/034f61d86de99210eb32a2dca27a3ad883f54750c46cdec4fcc53050b2f716eb
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjYNqhfCMajRI5X08flXOvbqcN9423dw6vMeGGxq4LMHckYnp4hi0A2MNYEJGR-SLm97VDDhQ4_A7cp6aTSM5tlKSMieckwp-JAOQK_PeiWpPhAP2qG6S0gxzQkjuKnd5Hxfy53TNHELtF4lIT1SElCIxdXU12Cft3VcadKgEYYJZdFmkpkvONi3ePlKA/s995/image3.png


3/35

For unpacking, use x64dbg to load Dll file, set a bp NtAllocateVirtualMemory. Then,
modify the breakpoint’s condition as follows:

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEghS5Pe9HHmc7_5xD-u4tXMM60UBqz1ITPzRkQ3oTGNAJ-IMp4JCHkqY8jrnIgaWuRCWlkr25-hBywpva1YXn34KBEx1-HleFwgGXq-kZhlHdss9Hpc6p0snzLx9g2ZgnBWie4zCezcnNK41HrygZRBxVdsnFZVzy6lXenyP92YNSgxfc7dsh2LvI122g/s850/image4.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhlD5bKn-4s6hXVbgqiYKqBQkWCI0VI6km2uc_HSR90YxNPAY6WuBb5acx-T1hCXBgNL-G0GjBc89LfY4DdNRnW3abO5BwCLhCXiZnA7K5NyY7yyIb-fvKiV9whJpDUdoaOC-utS7B0caSe92TH6ey7jntbqife7T3ZdGa7Ji15QxnVP0FLGHYOm5OKCw/s414/image5.png


4/35

Execute with F9 and wait until the breakpoint is hit (after about 1126120 hits):

Following the allocated memory regions, after the 3rd hit, the core Dll of Zloader will be
unpacked:

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhNfqYWQW986IRZJWTHdPx2BA1OMkvdwnWR_Pe5C0xNeXv55lcbZCtd8khAcGWxs4YJzSITwjx3E_wcsu5kS3UMt4x2xctNo9XCes-b6kSgdJDQFqb0FC-UFYNyYVuXRwwwb1ct-QvRzbCfdXN1kTX-l9_40qEk22VR4dbnlvBWxciCg-hr5NdfPRodGQ/s979/image6.png


5/35

Dump this Dll to disk, the file has MD5: 9b5589fcd123a3533584a62956f2231b.

3. Anti-analysis

To consume time of the analyst, Zloader uses meaningless functions, or rewrites functions
that look very complicated but only to perform simple tasks such as AND, OR, XOR, ADD,
SUB, etc.

For example, a function that does a meaningless task, however it can cause a delay in
execution in a sandbox environment:



6/35

Functions that perform AND, OR operations:

4. Decrypt wide string

4.1. Use IDAPython

All strings that the core DLL uses are encrypted. The wide string decoder function will take
two parameters as input:

First parameter: the address containing the encrypted string.

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh7Z6WGo4E6Bl9j0RAq4aO7zzyBcFquL6mV1fYjZ416DFTTDrIV73pljLfSh0Zud1ODZ09eM-yuLDqOJ36TIWEZOPrgRVrcuj2bnherYRj3AlH3GZHPIahdmb3-LXKbpixiREWxD_YBAXSxwnWoocJhS3kqVbZTeBF9q1gxzMvHcWB2RWuSKJSLt2dbHQ/s890/image11.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh7IQw2LNrE8ViHfZhI_dCBE8byCEAvnKbGsYmc_8jN3VjNy7OMSmszLwZDlBtHy2nVE3fXKwixuSyq_HxfuaPzxtfQmHEWBnPkMBZhHX4R7N4t_a7meDNf6y_UNrxwSGDd4rPaKJYsD1wdtMdnb2FrRG6Eb299QfHs9CYPEh_apUhMpF5MIwe05uryWA/s1315/image12.png


7/35

Second parameter: the address where the string is stored after decoding.

The pseudocode at the f_zl_decrypt_wstring decryption function looks confusing, but if we
look closely, the function performs a simple xor loop with the decryption key is “PgtrIPF-
2ftOj00Ox“:

Based on the above pseudocode, the python code that performs decryption as follows:



8/35

With the help of IDAPython, we can automate the whole process of string decoding and add
annotations at the decryption functions in IDA for further analysis. The entire python code is
as follows:



9/35

The results before and after the script execution will make the analysis easier:

4.2. Use IDA AppCall

If you don’t have time to dig into the decryption implementation of the function, or when the
algorithm is too complex, we can use IDA’s useful feature known as AppCall, to help decrypt
the data. Basically, Appcall is a mechanism used to call functions inside the debugged
program from the IDA debugger. Before applying AppCall, the first thing is to given a function
with a correct prototype. For example, the function f_zl_decrypt_wstring has the following
protoype:

wchar_t *__cdecl f_zl_decrypt_wstring(wchar_t *encString, wchar_t *decString);

Note again that in order to use AppCall, the program must be debugged. As shown below,
IDA is stopping at the breakpoint set at DllEntryPoint:



10/35

Then execute the below python script to decode and add comments related to decoded
strings at the functions:

The final result should be similar to the image below:



11/35

5. Decrypt ansi string

5.1. Use IDAPython

Besides the function to decode wide strings, Zloader also uses the function to decode ansi
strings. This function also accepts two arguments:

First parameter: the address containing the encrypted string.
Second parameter: the address where the string is stored after decoding.

Similar to the above f_zl_decrypt_wstring function, the pseudocode of the
f_zl_decrypt_string function looks quite messy, but it still uses an xor loop to decrypt with
the decryption key still “PgtrIPF-2ftOj00Ox“:



12/35

Here is the full python code to automate the whole process of decoding strings and adding
comments at functions:



13/35

The results before and after the script execution



14/35

5.2. Use IDA AppCall

To use AppCall, same as above, need to define correctly the prototype for the
f_zl_decrypt_string function as follows: char *__cdecl f_zl_decrypt_string(char
*encString, char *decString);

Slightly modified the script used for decoding the wide strings above:



15/35

Result after running the script:

6. List of Dlls used by Zloader



16/35

In the list of strings decrypted by the f_zl_decrypt_string function above, there is a string
after the decryption that is quite meaningless. Going to this address, after diving into it I
noticed that the first parameter passed to the function is an array containing the addresses of
the encrypted strings. Based on the corresponding index value of the array will access the
address containing the corresponding encrypted string:

Going to the g_ptr_enc_dll_str array (renamed above) will see a list of addresses as shown
below:

Modify the script to decode the specific Dll strings, the results obtained when executing the
script are as follows:



17/35

To summarize, we have a list of indexes corresponding to the DLLs that Zloader can use to
retrieve the addresses of APIs:

Index Dll Name

0 kernel32.dll

1 user32.dll

2 ntdll.dll

3 shlwapi.dll

4 iphlpapi.dll

5 urlmon.dll

6 ws2_32.dll

7 crypt32.dll

8 shell32.dll

9 advapi32.dll

10 gdiplus.dll

11 gdi32.dll

12 ole32.dll



18/35

13 psapi.dll

14 cabinet.dll

15 imagehlp.dll

16 netapi32.dll

17 wtsapi32.dll

18 mpr.dll

19 wininet.dll

20 userenv.dll

21 bcrypt.dll

7. Dynamic APIs resolve

Similar to other advanced malware… Zloader will also get the address of API function(s)
through searching by pre-computed hash value based on API function name.

As shown in the above figure, the f_zl_resolve_api_func_ex function takes two parameters:

(1): The first parameter is dll_index. Based on this parameter, the function will decode
the name of the corresponding Dll, then call the LoadLibraryA function to get the base
address of this Dll.



19/35

(2): The second parameter is pre_api_hash. This parameter is the pre-computed hash
of the API function name. The function f_zl_resolve_api_func_ex will call
f_zl_resolve_api_func to retrieve the corresponding API address:

The pseudocode at the f_zl_resolve_api_func function as follows:

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjRw-XGSXneZef857nGFxVhQgSEWEPUK_ka6KyPmnb2Wyi-f5HrJlt_8ElGrgXFKEDGEGdZuA6jvomsNGbht05yA0dmRjGffzZYENF_yM8lqNrMhfcJ0zkwm0HdHg61zMcAUhBv4ZQtxu3NQpS7V2IfWDWVuODLQDEzLqir85bqBxfBTsBvQrDMcVIC-g/s756/image31.png


20/35

The entire pseudocode of the function that performs the hash calculation by the API function
name is as follows:

Based on the above pseudocode, re-implement using Python code as follows:

Results when using the above function to find API functions corresponding to hash values
hash 0xFDA8B77, 0xB1C1FE3, 0x8ADF2D1:

With all the above analysis results, it is possible to write an IDAPython script to recover all
the APIs that Zloader uses. However, to avoid having to dig into Zloader’s hashing algorithm
for each analysis, here I will use AppCall to do this task. The python code that uses AppCall
is as follows:



21/35

Note, Zloader has many areas of code that call to the f_zl_resolve_api_func_ex function,
but there will be areas of code that do not have any reference to it and that area has not
been defined as a complete function. Therefore, to be able to run the above script, it is
necessary to create functions for those first. The final result after executing the script will be
as follows:

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhbBetSkxhzvZTl_ct1a_Vp_euPGyVxMCQwdCE_SMd0voF-2q9ZphziHnIQ1o3sHug6DQ7g394rj7kTXafvLQrd85ANLkZWVHth5gSvaeSYYGJnc20hxrzoizIGuDR5eF5K_vNFYhe3BMzjTs2VbWIbxhG1S-EPcwHejjWCmiFoBnbt0X1U1wGgYacNig/s1435/image38.png


22/35

However, as shown in the figure there are still places where the API function can’t be
recovered, that’s because Zloader has performed the previous calculation of the dll_index
and pre_api_hash values and saved them in the register. After that, call the
f_zl_resolve_api_func_ex function:

8. Process Injection Technique

Zloader, when executed, will inject Core Dll into the msiexec.exe process. The whole
process is as follows:

Use the CreateProcessA API function to create the msiexec.exe process in the
SUSPENDED state.

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh6xs7R8t_rYqMmRaakSFwbJ_6xfSdSKFuuVWwfhpynVUuUhFR_mvTQ6KBN9jgtErmKVt-vtK0pwctZJLyJBoo8IRyxBnGsZJJ-dAAbhSea3TdQvr7KmI3jvSk2auezcTO1KJrDDSVYAw49SNj1Qs9CHR3VQ-d09STDJiXjLAEX6H6ql02ZmmaJv0012w/s1207/image39.png


23/35

Get SizeOfImage value of Zloader Dll being loaded by rundll32.exe/regsvr32.exe.
Use the VirtualAllocEx API function to allocate new memory inside the msiexec.exe
process:

Allocate heap memory, copy the entire contents of the Dll into this heap:

Generate a random number and use it to encrypt the entire payload stored in the heap:



24/35

Use the WriteProcessMemory API function to write the entire encrypted payload from
the heap to the previously allocated memory in the msiexec.exe process:



25/35

Continue to use the VirtualAllocEx API function to allocate a second memory region
has size of region are 66 bytes in the msiexec.exe process. This memory region will
be used to decrypt the entire encrypted Dll above. Update the STARTUPINFO
structure created by the CreateProcessA function before, the data here are the
assembly code that will be used to decrypt the encrypted Dll. Then, call the
WriteProcessMemory function to write the updated contents of STARTUPINFO to the
newly created memory region.



26/35

Finally, use the GetThreadContext, SetThreadContext, ResumeThread or
CreateRemoteThread API functions to execute the msiexec.exe process. At this
point, the entry point executed at msiexec.exe will be the memory region that
containing the code to perform the decrypting mission:

After decrypting the entire Zloader Dll, it will jump to the RVA address of 0xF270 (File
offset: 0xE670) to execute the main tasks of the malware:



27/35

9. Decrypt Zloader config

The configuration info of the Zloader has been encrypted and stored in the .rdata section.
The decrypt function takes two parameters are the encrypted configuration data and the key
used to decrypt:

Inside the function f_zl_decrypt_config will use the RC4 algorithm to decrypt the data:



28/35

With the analyzed results, we can use IDAPython code below to perform the decoding:

Result after executing the script:



29/35

10. Collect and save configuration in Registry

When first executed, Zloader will collect information about the victim including
volume_GUID, Computer_Name, Windows version, Install Date, create random folders
at %APPDATA%, generate a random registry key at
HKEY_CURRENT_USERSoftwareMicrosoft, then encrypt all relevant information and save
it in the created registry:

The information stored in the registry is similar to the following:



30/35

To decrypt the data stored in the above Registry, use the decoded embedded RC4 key
above. With the support of CyberChef, we can easily decrypt data as follows below:

11. Persistence technique

Zloader reads the entire contents of the core Dll from disk into the memory region, then
writes to a random dll in a directory created above at %APPDATA%:



31/35

Create persistence key at
HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRun:

12. References

Tran Trung Kien (aka m4n0w4r) 

Malware Analysis Expert

R&D Center – VinCSS (a member of Vingroup)



32/35

 Go back
RELATED POST

 20/05/2022

[RE027] China-based APT Mustang Panda might still have continued their attack activities
against organizations in Vietnam
At VinCSS, through continuous cyber security monitoring, hunting malware samples and
evaluating them to determine the potential risks, especially malware samples targeting
Vietnam. Recently, during hunting on VirusTotal’s platform and performing scan for specific
byte patterns related to the Mustang Panda (PlugX), we discovered a series of malware
samples, suspected to be relevant to APT Mustang Panda, that was uploaded from Vietnam.

https://blog.vincss.net/re027-china-based-apt-mustang-panda-might-still-have-continued-their-attack-activities-against-organizations-in-vietnam/
https://blog.vincss.net/re027-china-based-apt-mustang-panda-might-still-have-continued-their-attack-activities-against-organizations-in-vietnam/


33/35

 09/11/2021

[EX008] The exploit chain allows to take control of Zalo user accounts
While using the Zalo application, one of the popular chat applications in Vietnam today
(According to statistics from Wikipedia, since May 2018, Zalo has reached 100 million users),
the Threat Hunting team from VinCSS LLC discovered some security vulnerabilities that
allow the attacker to form an exploit chain to take control of Zalo accounts.

 27/10/2021

[RE025] TrickBot … many tricks

https://blog.vincss.net/ex008-the-exploit-chain-allows-to-take-control-of-zalo-user-accounts/
https://blog.vincss.net/ex008-the-exploit-chain-allows-to-take-control-of-zalo-user-accounts/
https://blog.vincss.net/re025-trickbot-many-tricks/
https://blog.vincss.net/re025-trickbot-many-tricks/


34/35

1. Introduction First discovered in 2016, until now TrickBot (aka TrickLoader or Trickster) has
become one of the most popular and dangerous malware in today’s threat landscape. The
gangs behind TrickBot are constantly evolving to add new features and tricks. Trickbot is
multi-modular malware, with a main payload will be responsible for loading other plugins […]

 10/08/2021

[EX007] How playing CS: GO helped you bypass security products
Many of us love to play games, and as offensive security engineers, we also want to learn
about how game studios are dealing with cheaters. We have observed that cheaters have
used vulnerable graphic drivers to bypass anti-cheat mechanisms from several gaming
cheating forums. In some cases, the cheaters tried to install vulnerable driver versions onto
their computers, then exploited the vulnerability to read and write the game process’s
memory with the kernel privileges.

https://blog.vincss.net/ex007-how-playing-cs-go-helped-you-bypass-security-products/
https://blog.vincss.net/ex007-how-playing-cs-go-helped-you-bypass-security-products/


35/35

 03/07/2021

[RE023] Quick analysis and removal tool of a series of new malware variant of Panda group
that has recently targeted to Vietnam VGCA
Through continuous cyber security monitoring and hunting malware samples that were used
in the attack on Vietnam Government Certification Authority, and they also have attacked a
large corporation in Vietnam since 2019, we have discovered a series of new variants of the
malware related to this group.

https://blog.vincss.net/re023-quick-analysis-and-removal-tool-of-a-series-of-new-malware-variant-of-panda-group-that-has-recently-targeted-to-vietnam-vgca/
https://blog.vincss.net/re023-quick-analysis-and-removal-tool-of-a-series-of-new-malware-variant-of-panda-group-that-has-recently-targeted-to-vietnam-vgca/

