
1/4

April 28, 2022

What’s up with std::piecewise_construct and
std::forward_as_tuple?

devblogs.microsoft.com/oldnewthing/20220428-00

Raymond Chen

There is this curious marker type in the C++ standard library called piecewise_

construct_t , and an inline variable piecewise_construct that produces it. What’s the

deal with this guy, and his friend std::forward_as_tuple ?

STL explained it to me.

We’ll start with std::forward_as_tuple : This takes its arguments and produces a tuple of

corresponding references.

int x;

// produces std::tuple<int&, std::string&&>
std::forward_as_tuple(x, std::string(L"hello"));

Note that this potentially contains a tuple of rvalue references, which means that you had

better use the tuple before the end of the statement, before the temporaries are destroyed. If

you don’t, then you have a use-after-free bug:

auto values = std::forward_as_tuple(x, std::string(L"hello"));
std::get<1>(values); // dangling reference to destructed string

The purpose of std::forward_as_tuple is to wrap up a bunch of parameters, probably a

parameter pack, into a single object that can be passed as a single non-pack parameter. This

is handy if you need to work with a pattern that accepts only a single parameter, so you use

the tuple as a way to aggregate multiple objects into one.

template<typename...Args>
auto f(Args&&...args)
{
 auto t = std::forward_as_tuple(std::forward<Args>(args)...);
 ... do something with t ...
}

https://devblogs.microsoft.com/oldnewthing/20220428-00/?p=106540
https://twitter.com/StephanTLavavej

2/4

A case where you may want to wrap up a bunch of parameters into a single parameter is if

you need to pass multiple groups of parameters. The C++ language doesn’t let you write

template<typename...Group1,
 typename...Group2>
void something(Group1&&... group1,
 Group2&&... group2)
{
 ...
}

because there’s no way to know where the first group ends and the second group begins. But

you can do this if you pass the parameters as perfectly-forwarded tuples of references.

template<typename...Group1,
 typename...Group2>
void something(std::tuple<Group1&&...> group1,
 std::tuple<Group2&&...> group2)
{
 ...
}

This is where std::piecewise_construct enters the story.

The std::pair wants to let you construct the components in place. The existing two-

parameter constructor tries to construct the first element from the first parameter and the

second element from the second parameter:

struct T1
{
 T1(int);
 T1(int, std::string);
};

struct T2
{
 T2(std::string);
 T2();
};

auto f()
{
 // uses T1(a1) and T2(a2)
 return std::pair<T1, T2>(a1, a2);
}

If you want to use a T1 or T2 constructor that takes any number of parameters other than

one, you can pack them into tuples, and use the marker value std::piecewise_construct

to say, “Hey, like, don’t pass the tuples as-is to the constructors. Instead, unpack the tuples

and invoke the constructors with the tuple elements.”

3/4

auto f()
{
 // without piecewise_construct: tries to use
 // T1(std::tuple<int, char const*>(42, "hello"))
 // and T2(std::tuple<>())
 // (neither of which works)
 return std::pair<T1, T2>(
 std::make_tuple(42, "hello"),
 std::make_tuple());
}

auto f()
{
 // with piecewise_construct:
 // uses T1(42, "hello")
 // and T2()
 return std::pair<T1, T2>(
 std::piecewise_construct,
 std::make_tuple(42, "hello"),
 std::make_tuple());
}

The T1 and T2 are constructed in place directly into the pair, and in this case, it means

that they are constructed in place directly into the return value (due to copy elision).

Now, you could have done this without std::piecewise_construct :

// uses T1(42, "hello") with T1(T1 const&)
// and T2() with T2(T2 const&)
return std::pair<T1, T2>({ 42, "hello" }, {});

but this does not construct the T1 and T2 objects in place. It uses the pair(T1 const&,

T2 const&) constructor. That means that it creates a temporary T1(42, "hello") and

passes it as a T1 const& to T1 ‘s constructor, which will copy it. Similarly, it creates a

temporary T2() object, and then copies the temporary to the pair’s T2 .

Not only is it wasteful, but it also requires that T1 and T2 be copyable, which may not be

possible for the T1 and T2 you need.

If your T1 and T2 are at least movable, you could use

// uses T1(42, "hello") with T1(T1 &&)
// and T2() with T2(T2 &&)
return std::pair<T1, T2>(T1{ 42, "hello" }, T2{});

That saves you a copy, but it’s not quite the same as just constructing in place from the

original parameters.

The std::piecewise_construct marker works well in conjunction with

std::forward_as_tuple :

4/4

template<typename...Args>
auto make_t1_with_default_t2(Args&&...args)
{
 return std::pair<T1, T2>(
 std::piecewise_construct,
 std::forward_as_tuple(std::forward<Args>(args)...),
 std::make_tuple());
}

The std::piecewise_construct marker pattern propagates into all of the emplace

methods, since emplacement is built out of the constructor.

std::vector<std::pair<T1, T2>> v;

template<typename...Args>
auto add_t1_with_default_t2(Args&&...args)
{
 v.emplace_back(
 std::piecewise_construct,
 std::forward_as_tuple(std::forward<Args>(args)...),
 std::make_tuple());
}

In particular, you’re likely to use it with std::map::emplace , since that takes a pair.

std::map<T1, T2> m;

m.emplace(
 std::piecewise_construct,
 std::make_tuple(42, "hello"),
 std::make_tuple());

Now you won’t be scared when you see std::piecewise_construct . It’s just a marker that

means, “I’m going to construct multiple things, and the constructor parameters are provided

as tuples, so you know where one set of parameters ends and the next one begins.”

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

