
1/3

May 16, 2022

How can I synthesize a C++20 three-way comparison
from two-way comparisons?

devblogs.microsoft.com/oldnewthing/20220516-52

Raymond Chen

The C++20 three-way comparison operator <=> (commonly nicknamed the spaceship

operator due to its appearance) compares two items and describes the result. It’s called the

three-way comparison because there are five possible results: less, equal, equivalent, greater,

and unordered.

Yeah, the name is kind of weird.

It’s called the three-way comparison because in other languages, the equivalent operator has

three possible results: less, equal, and greater. C++20 expands the set of possible results but

kept the old name. (Sound familiar?)

Ordering Results

strong ordering less equal equivalent greater

weak ordering less equivalent greater

partial ordering less equivalent greater unordered

Each of the orderings can convert to the one below it, using the conversions given by the

chart.

The strong ordering distinguishes between items being equal (identical and interchangeable)

and equivalent (not interchangeable but close enough for some purpose). For example, two

instances of the same string "hello" are equal, in that they represent the same string and

are fully interchangeable. On the other hand, two people with the same security clearance are

equivalent from a security perspective (they have access to the same things), but they are not

equal (they are nevertheless different people).

https://devblogs.microsoft.com/oldnewthing/20220516-52/?p=106661
https://en.wikipedia.org/wiki/Unidentified_flying_object
https://en.wikipedia.org/wiki/Rule_of_three_(C%2B%2B_programming)

2/3

When sorting, you are usually interested in equivalence, but when searching you might be

interested in equality. (I’m looking for Bob, not just anybody with the same security clearance

as Bob.)

Suppose you have an object from a class library that predates C++20 and doesn’t support

three-way comparison. You want your code to be able to take advantage of the three-way

comparison should the library be updated but fall back to two-way comparison in the

meantime. In other words, you want to take advantage of three-way comparison if available.

Fortunately, you don’t have to write all that SFINAE nonsense, because somebody else has

done it for you: std::tuple .

Tuples have the bonus property of supporting the three-way comparison operator, even if the

underlying types do not. In the case where they do not, they will synthesize a three-way

comparison from the two-way comparisons.

if a < b return less

else if a > b return greater

otherwise return equivalent

So we can just wrap the objects inside a std::tuple and compare the tuples. To avoid

unnecessary copies, we can wrap them as references, or use forward_as_tuple which

always uses references.

std::weak_ordering
compare_3way_via_tuple(T const& a, T const& b)
{
 return std::forward_as_tuple(a) <=>
 std::forward_as_tuple(b);
}

It turns out that there’s already a pre-made function that does something very similar:

std::compare_weak_order_fallback also synthesize a missing three-way

comparison, but it uses a different algorithm from tuples:

if a == b return equivalent

else if a < b return less

otherwise return greater

Tuples use a different algorithm from std::compare_weak_order_fallback . Which

one is better? Why are they different?

3/3

I suspect that tuples use a different algorithm because tuple ordering comes from C++11,

which predates three-way comparison. Back in those days, the comparison operators was

used mostly for sorting and other ordered-sequence type algorithms. And those algorithms

require only that the objects support the < operator. Therefore, tuples have to make do with

only the < operator.

On the other hand, std::compare_weak_order_fallback was born into the world of

three-way comparisons, so it has more liberty to take dependencies on things beyond just the

< operator.

If you know that the underlying object supports == , then my guess is that std::compare_

weak_order_fallback is better, because == testing tends to be faster than < testing.

For example, comparing two strings for equality can short-circuit if the strings are different

lengths. This shortcut is not available for less-than comparison.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

