
1/28

[RE027] China-based APT Mustang Panda might still
have continued their attack activities against
organizations in Vietnam

blog.vincss.net/re027-china-based-apt-mustang-panda-might-still-have-continued-their-attack-activities-against-
organizations-in-vietnam/

 20/05/2022

1. Executive Summary

At VinCSS, through continuous cyber security monitoring, hunting malware samples and
evaluating them to determine the potential risks, especially malware samples targeting
Vietnam. Recently, during hunting on VirusTotal’s platform and performing scan for specific
byte patterns related to the Mustang Panda (PlugX), we discovered a series of malware
samples, suspected to be relevant to APT Mustang Panda, that was uploaded from Vietnam.

All of these samples share the same name as “log.dll” and have a rather low detection rate.

https://blog.vincss.net/re027-china-based-apt-mustang-panda-might-still-have-continued-their-attack-activities-against-organizations-in-vietnam/
https://www.virustotal.com/

2/28

Based on the above information, we infer that there is a possibility that malware has been
infected in certain orgs in Vietnam, so we decided to analyze these malware samples. During
analysis, based on the detected indicators, we continue to investigate and set the scenario of
the attack campaign.

A general overview of the execution flow demonstrated as follow:

Our blog includes:

Technical analysis of the log.dll file.
Technical analysis of shellcode decrypted from log.dat.
Analyze PlugX Dll as well as decrypt PlugX configuration information.

2. Analyze the log.dll

In the list of hunted samples above, we choose the one with hash:
3171285c4a846368937968bf53bc48ae5c980fe32b0de10cf0226b9122576f4e

This sample was submitted to VirusTotal from Vietnam on 2022-04-25 14:04:36 UTC

https://www.virustotal.com/gui/file/3171285c4a846368937968bf53bc48ae5c980fe32b0de10cf0226b9122576f4e/detection

3/28

The information from the Rich Header suggests that it is likely compiled with Visual Studio
2012/2013:

By checking the sections information, we can see that it is packed or the code is obfuscated:

Sample has the original name ljAt.dll, and it exports two functions LogFree and LogInit:

4/28

Load sample into IDA, analyze the code of the two functions above:

LogFree function:

Looking at this function, it can be seen that its code has been completely obfuscated by
Obfuscator-LLVM, using the Control Flow Flattening technique:

After further analysis, I found that this function has no special task.

LogInit function:

This function will call the LogInit_0 function:

https://blog.quarkslab.com/deobfuscation-recovering-an-ollvm-protected-program.html
https://github.com/obfuscator-llvm/obfuscator/wiki/Control-Flow-Flattening

5/28

Similar to the above, the code at the LogInit_0 function has also been completely
obfuscated, it takes a long time for IDA to decompile the code of this function:

The primary task of the LogInit_0 function is to call the function
f_read_content_of_log_dat_file_to_buf for reading the content of log.dat file and execute
the decrypted shellcode:

6/28

f_read_content_of_log_dat_file_to_buf’s code is also completely obfuscated:

The major task of this function as the following:

Call the GetModuleHandleW function to retrieve the handle of kernel32.dll.
Call the GetProcAddress function to get the addresses of the APIs: VirtualAlloc,
GetModuleFileNameA, CreateFileA, ReadFile.

7/28

Use the above APIs to retrieve the path to the log.dat file and read the contents of this
file into the allocated memory.

Decode the contents of log.dat into shellcode so that this shellcode is then executed
by the call from the LogInit_0function.

3. Shellcode analysis

Based on the information analyzed above, we know that the log.dll file will read the content
from the log.dat file and decrypt it into shellcode for further execution. Relying on this
indicator, we continue to hunt log.dat file on VirusTotal which restrict the scope of
submission source from Vietnam.

The results are following:

8/28

With the above results, at the time of analysis, we selected the log.dat file
(2de77804e2bd9b843a826f194389c2605cfc17fd2fafde1b8eb2f819fc6c0c84) was submitted
to VirusTotal on 2022-04-20 12:33:19 UTC (5 days before the above log.dll file).

Debugging and dump the decrypted shellcode look like this:

I use two tools, FLOSS and scdbg to get an overview of this shellcode. The results can be
seen in the screenshots below:

https://www.virustotal.com/gui/file/2de77804e2bd9b843a826f194389c2605cfc17fd2fafde1b8eb2f819fc6c0c84/detection
https://github.com/mandiant/flare-floss
http://sandsprite.com/blogs/index.php?uid=7&pid=152

9/28

With the results obtained above, it can be seen that this shellcode will perform memory
allocation and then call the RtlDecompressBuffer function to decompress the data with the
compression format is COMPRESSION_FORMAT_LZNT1.

By using IDA to analyze this shellcode, its main task is to decompress a Dll into memory and
call the exported function of this Dll to execute. The function that does this task is named
f_load_dll_from_memory:

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhyusmDViAzYeQYWV5vB84EHiLrgfdcfDkd0njgyIWcSVryXzxHiemwZQ6YU6SqGVjUvlofXaLbP14LFHbRqkvYt9CxFdRvpNVE128u-gBfh3GnjTDW16KDeQICV_O0vZ2GOpD5d4Z0jJuMNLt5kJbJIzAC7Fl8jM4qZkND9qA0lLXlix0F-6Exjj52Nw/s474/image17.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjlYLFnI9m6fcMTqmF6ip7fn9kCLxU7rd0ez4xRFaXQ6ZiwIOKFVQ8W-dXnYr66IrVmAk_H76o_LD3aR3vK-lwcqiWtYlwYPxBhnolu-O3X0pzXF_NliiYFrgHCivkcd_9hmC5bO78EmU5C2J-goKWdq7Ke-K4TJ3vthKeU6geVrTeEKt3rGRrVGYimmg/s1111/image18.png

10/28

The code in this function will first get the base address of kernel32.dll based on the pre-
calculated hash value is 0x6A4ABC5B. This hash value has also been mentioned by us in
this analysis.

Next it will retrieve the address of GetProcAddress:

https://blog.vincss.net/2020/03/re012-phan-tich-ma-doc-loi-dung-dich-COVID-19-de-phat-tan-gia-mao-chi-thi-cua-thu-tuong-Nguyen-Xuan-Phuc-phan2.html

11/28

By using the stackstring technique, the shellcode constructs the names of the APIs and gets
the addresses of the following API functions:

Next, the shellcode performs a memory allocation (compressed_buf) of size 0x2E552, then
reads data from offset 0x1592 (on disk) and executes an xor loop with a key is 0x72 to fill
data into the compressed_buf. In fact, the size of compressed_buf is 0x2E542, but its first
16 bytes are used to store information about signature, uncompressed_size,
compressed_size, so 0x10 is added.

https://www.mandiant.com/resources/automatically-extracting-obfuscated-strings

12/28

Shellcode continues to allocate memory (uncompressed_buf) of size 0x4C000 and calls
the RtlDecompressBuffer function to decompress the data at the compressed_buf into
uncompressed_buf with the compression format is COMPRESSION_FORMAT_LZNT1.

Based on the above analysis results, it is easy to get the extracted Dll file (however, the file
header information was destroyed):

13/28

Fix the header information and check with PE-bear, this Dll has the original name is
RFPmzNfQQFPXX and only exports one function named Main:

https://github.com/hasherezade/pe-bear-releases

14/28

Back to the shellcode, after decompressing the Dll into memory, it will perform the task of a
loader to map this Dll into a new memory region. Then, call to the exported function (here is
the Main function) to perform the the main task of malware:

Note: At the time of analyzing this shellcode, we have not yet confirmed it is a variant of the
PlugX malware, but only raised doubts about the relationship. It was only when we analyzed
the above extracted Dll, then we confirmed for sure that this was a variant of PlugX and
renamed the fields in the struct for understandable reasons as screenshot above.

15/28

4. Analyze the extracted Dll

We will not go into detailed analysis of this Dll, but only provide the necessary information to
prove that this is a PlugX variant as well as the process of decrypting the configuration
information that the malware will be used.

4.1. How PlugX calls an API function

In this variant, information about API functions is stored in xmmword, then loaded into the
xmm0 (128-bit) register, the missing part of the function name will be loaded through the
stack. The malicious code gets the handle of the Dll corresponding to these API functions,
then uses GetProcAddress function to retrieve the address of the specified API function to
use later:

4.2. Create main thread to execute

The malware adjusts the SeDebugPrivilege and SeTcbPrivilege tokens of its own process
in order to gain full access to system processes. Then it creates its main thread, which is
named “bootProc”:

16/28

4.3. Communicating with C2

The malware can communicate with C2 via TCP, HTTP or UDP protocols:

4.4. Implemented commands

17/28

The malware will receive commands from the attacker to execute the corresponding
functions related to Disk, Network, Process, Registry, etc.

The entire list of commands as shown in the table below that the attacker can execute
through this malware sample:

Command
Group

Sub-
command

Description

Disk 0x3000 Get information about the drives (type, free space)

0x3001 Find file

0x3002 Find file recursively

0x3004 Read data from the specified file

0x3007 Write data to the specified file

0x300A Create a new directory

0x300C Create a new process on hidden desktop

0x300D File action (file copy/rename/delete/move)

0x300E Expand environment-variable strings

Nethood 0xA000 Enumeration of network resources

Netstat 0xD000 Retrieve a table that contains a list of TCP endpoints

0xD001 Retrieve a table that contains a list of UDP endpoints

0xD002 Set the state of a TCP connection

18/28

Option 0x2000 Lock the workstation’s display

0x2001 Force shut down the system

0x2002 Restart the system

0x2003 Shut down the system safety

0x2005 Display massage box

PortMap 0xB000 Perform port mapping

Process 0x5000 Retrieve processes info

0x5001 Retrieve modules info

0x5002 Terminate specified process

RegEdit 0x9000 Enumerate registry

0x9001 Create registry

0x9002 Delete registry

0x9003 Copy registry

0x9004 Enumerates the values of the specified open registry key

0x9005 Sets the data and type of a specified value under a registry key

0x9006 Deletes a named value from the specified registry key

0x9007 Retrieves a registry value

Service 0x6000 Retrieves the configuration parameters of the specified service

0x6001 Changes the configuration parameters of a service

0x6002 Starts a service

0x6003 Sends a control code to a service

0x6004 Delete service

Shell 0x7002 Create pipe and execute command line

SQL 0xC000 Get SQL data sources

0xC001 Lists SQL drivers

0xC002 Executes SQL statement

19/28

Telnet 0x7100 Start telnet server

Screen 0x4000 simulate working over the RDP Protocol

0x4100 Take screenshot

KeyLog 0xE000 Perform key logger function, log keystrokes to file
“%allusersprofile%MSDN6.0USER.DAT“

4.5. Decrypt PlugX configuration

As analyzed above, the malware will connect to the C2 address via HTTP, TCP or UDP
protocols depending on the specified configuration. So where is this config stored? With the
old malware samples that we have analyzed (1, 2, 3, 4), the PlugX configuration is usually
stored in the .data section with the size of 0x724 (1828) bytes.

Going back to the sample we are analyzing, we see that before the step of checking the
parameters passed when the malware executes, it will call the function that performs the task
of decrypting the configuration:

https://blog.vincss.net/2020/03/re012-phan-tich-ma-doc-loi-dung-dich-COVID-19-de-phat-tan-gia-mao-chi-thi-cua-thu-tuong-Nguyen-Xuan-Phuc.html
https://www.virustotal.com/gui/file/b9b5249403410df47990e6ffe4418c71aa0ed4e116f99a574526b527aa029f63/detection
https://www.virustotal.com/gui/file/24422cb0f7d728cc09141faf58798e307952657f3624ea11b7cae6e743d56fd6/detection
https://www.virustotal.com/gui/file/b9b5249403410df47990e6ffe4418c71aa0ed4e116f99a574526b527aa029f63/detection

20/28

Diving into this function, combined with additional debugging from shellcode, renaming the
fields in the generated struct, we get the following information:

PlugX’s configuration is embedded in shellcode and starts at offset 0x69.
The size of the configuration is 0x0150C (5388) bytes.
Decryption key is 0xB4.

21/28

With all the complete information as above, it is possible to recover the configuration
information easily:

IP Port

86.78.23.152 53

86.78.23.152 22

86.78.23.152 8080

86.78.23.152 23

22/28

In addition to the list of C2 addresses above, there is additional information related to the
directory created on the victim machine to contain malware files as well as the name of the
service that can be created:

To make our life easier, I wrote a python script to automatically extract configuration
information for this variant. The output after running the script is as follows:

5. Conclusion

CrowdStrike researchers first published information on Mustang Panda in June 2018, after
approximately one year of observing malicious activities that shared unique Tactics,
Techniques, and Procedures (TTPs). However, according to research and collect from many
different cybersecurity companies, this group of APTs has existed for more than a decade
with different variants found around the world. Mustang Panda, believed to be a APT group
based in China, is evaluated as one of the highly detrimental APT groups, applying
sophisticated techniques to infect malware, aiming to gain as much long-term access as
possible to conduct espionage and information theft.

In this blog we have analyzed the different steps the infamous PlugX RAT follows to start
execution and avoid detection. Thereby, it can be seen that this APT group is still active and
constantly looking for ways to improve their techniques. VinCSS will continue to search for
additional samples and variants that may be associated with this PlugX variant that we
analyzed in this article.

6. References

23/28

7. Indicators of Compromise

log.dll – db0c90da56ad338fa48c720d001f8ed240d545b032b2c2135b87eb9a56b07721

log.dll – 84893f36dac3bba6bf09ea04da5d7b9608b892f76a7c25143deebe50ecbbdc5d

log.dll – 3171285c4a846368937968bf53bc48ae5c980fe32b0de10cf0226b9122576f4e

log.dll – da28eb4f4a66c2561ce1b9e827cb7c0e4b10afe0ee3efd82e3cc2110178c9b7a

log.dat – 2de77804e2bd9b843a826f194389c2605cfc17fd2fafde1b8eb2f819fc6c0c84
Decrypted config:

[+] Folder name: %ProgramFiles%BitDefender Update

[+] Service name: BitDefender Crash Handler

[+] Proto info: HTTP://

[+] C2 servers:

86.78.23.152:53

86.78.23.152:22

86.78.23.152:8080

86.78.23.152:23

[+] Campaign ID: 1234

log.dat – 0e9e270244371a51fbb0991ee246ef34775787132822d85da0c99f10b17539c0
Decrypted config:

[+] Folder name: %ProgramFiles%BitDefender Update

[+] Service name: BitDefender Crash Handler

[+] Proto info: HTTP://

[+] C2 servers:

86.79.75.55:80

86.79.75.55:53

86.79.75.46:80

86.79.75.46:53

[+] Campaign ID: 1234

24/28

log.dat – 3268dc1cd5c629209df16b120e22f601a7642a85628b82c4715fe2b9fbc19eb0
Decrypted config:

[+] Folder name: %ProgramFiles%Common FilesARO 2012

[+] Service name: BitDefender Crash Handler

[+] Proto info: HTTP://

[+] C2 servers:

86.78.23.152:23

86.78.23.152:22

86.78.23.152:8080

86.78.23.152:53

[+] Campaign ID: 1234

log.dat – 02a9b3beaa34a75a4e2788e0f7038aaf2b9c633a6bdbfe771882b4b7330fa0c5
(THOR PlugX)
Decrypted config:

[+] Folder name: %ProgramFiles%BitDefender Handler

[+] Service name: BitDefender Update Handler

[+] Proto info: HTTP://

[+] C2 servers:

www.locvnpt.com:443

www.locvnpt.com:8080

www.locvnpt.com:80

www.locvnpt.com:53

[+] Campaign ID: 1234

Click here for Vietnamese version.

Dang Dinh Phuong – Threat Hunter

Tran Trung Kien (aka m4n0w4r) – Malware Analysis Expert

R&D Center – VinCSS (a member of Vingroup)

https://blog.vincss.net/2022/05/re027-nhom-apt-mustang-panda-co-the-van-dang-tiep-tuc-hoat-dong-tan-cong-vao-cac-to-chuc-tai-Vietnam.html

25/28

 Go back
RELATED POST

 25/04/2022

[RE026] A Deep Dive into Zloader – the Silent Night
Zloader, a notorious banking trojan also known as Terdot or Zbot. This trojan was first
discovered in 2016, and over time its distribution number has also continuously increased.
The Zloader’s code is said to be built on the leaked source code of the famous ZeuS
malware. In 2011, when source code of ZeuS was made public and since then, it has been
used in various malicious code samples.

https://blog.vincss.net/re026-a-deep-dive-into-zloader-the-silent-night/
https://blog.vincss.net/re026-a-deep-dive-into-zloader-the-silent-night/
https://blog.vincss.net/ex008-the-exploit-chain-allows-to-take-control-of-zalo-user-accounts/

26/28

 09/11/2021

[EX008] The exploit chain allows to take control of Zalo user accounts
While using the Zalo application, one of the popular chat applications in Vietnam today
(According to statistics from Wikipedia, since May 2018, Zalo has reached 100 million users),
the Threat Hunting team from VinCSS LLC discovered some security vulnerabilities that
allow the attacker to form an exploit chain to take control of Zalo accounts.

 27/10/2021

[RE025] TrickBot … many tricks
1. Introduction First discovered in 2016, until now TrickBot (aka TrickLoader or Trickster) has
become one of the most popular and dangerous malware in today’s threat landscape. The
gangs behind TrickBot are constantly evolving to add new features and tricks. Trickbot is
multi-modular malware, with a main payload will be responsible for loading other plugins […]

https://blog.vincss.net/ex008-the-exploit-chain-allows-to-take-control-of-zalo-user-accounts/
https://blog.vincss.net/re025-trickbot-many-tricks/
https://blog.vincss.net/re025-trickbot-many-tricks/

27/28

 10/08/2021

[EX007] How playing CS: GO helped you bypass security products
Many of us love to play games, and as offensive security engineers, we also want to learn
about how game studios are dealing with cheaters. We have observed that cheaters have
used vulnerable graphic drivers to bypass anti-cheat mechanisms from several gaming
cheating forums. In some cases, the cheaters tried to install vulnerable driver versions onto
their computers, then exploited the vulnerability to read and write the game process’s
memory with the kernel privileges.

https://blog.vincss.net/ex007-how-playing-cs-go-helped-you-bypass-security-products/
https://blog.vincss.net/ex007-how-playing-cs-go-helped-you-bypass-security-products/

28/28

 03/07/2021

[RE023] Quick analysis and removal tool of a series of new malware variant of Panda group
that has recently targeted to Vietnam VGCA
Through continuous cyber security monitoring and hunting malware samples that were used
in the attack on Vietnam Government Certification Authority, and they also have attacked a
large corporation in Vietnam since 2019, we have discovered a series of new variants of the
malware related to this group.

https://blog.vincss.net/re023-quick-analysis-and-removal-tool-of-a-series-of-new-malware-variant-of-panda-group-that-has-recently-targeted-to-vietnam-vgca/
https://blog.vincss.net/re023-quick-analysis-and-removal-tool-of-a-series-of-new-malware-variant-of-panda-group-that-has-recently-targeted-to-vietnam-vgca/

