
1/3

June 6, 2022

An opinionated comparison of C++ frameworks for
consuming and implementing Windows Runtime types

devblogs.microsoft.com/oldnewthing/20220606-00

Raymond Chen

There are three leading C++ frameworks for consuming and implementing Windows

Runtime types. The current recommendation (as of this writing) is C++/WinRT.

 WRL C++/CX C++/WinRT

Error handling
HRESULT -based Exception-based Exception-

based

Interop with C++
standard library

Poor Middling Good

Code verbosity Very high Low Low

Code generation Small Explosively large Small

Compile time Low Low High¹

IDL file
Manually authored Automatically

generated²
Manually
authored

Static class
constructor³

Supported Not supported Supported

COM static lifetime
 for factories⁴

Can implement
manually

Cannot implement Built-in

Default threading
model

It’s complicated⁵ Free Free

Can choose
nondefault

 threading model

Yes No Yes

Language
Standard C++ Nonstandard

extension
Standard C++

https://devblogs.microsoft.com/oldnewthing/20220606-00/?p=106713

2/3

Static analysis tools Supported Not supported Supported

Language standard
 required

C++11 and higher C++14 or C++17
 with /await

C++17 and
higher

Forward
compatibility

Compatible Incompatible with
C++20

Compatible

XAML compiler
support

No Yes Yes

Coroutine support No Yes via PPL⁶ Yes

License/source code Ships in SDK Closed source Open source

Support Maintenance None Active

Notes

¹ C++/WinRT contains a large number of types and template specializations, which slows

down the compiler. The precompiled header file easily exceeds 1GB in size. You can define

WINRT_LEAN_AND_MEAN to remove rarely-used features and improve compile times.

² Automatic generation of the IDL file is a two-edged sword. Although it saves a lot of effort,

it can also get in the way: If you need to make a runtime class object marshallable, you need

to register a marshaller for the autogenerated interface, which will have an ugly

autogenerated name, and whose UUID may not be stable. Autogeneration also conflicts with

versioning, makes it harder to interop with other languages, and it can result in puzzling

behavior if you don’t understand how the autogeneration works. Furthermore, the

autogenerated interface names do not follow Windows Runtime naming conventions.

³ Static class constructors allow class statics to be delay-initialized. This is significant because

running constructors at DLL_PROCESS_ATTACH creates the risk of deadlocks and other

unfortunate behaviors. C++/CX clients must work around this by having a static

Initialize Statics() method which initializes the statics (e.g., dependency properties)

and calling it at an opportune moment.

⁴ COM static lifetime allows you to register an object in the COM static lifetime store, which

allows you to (1) obtain it later, and (2) destruct it automatically when COM is uninitialized.

The former provides a persistent-lifetime object for things like global event sources. The

latter permits the object’s destructors to run while COM is still initialized.

⁵ Default is normally free-threaded, but if BUILD_WINDOWS is set, then default is single-

threaded.

⁶ PPL coroutine support is very large.

https://github.com/Microsoft/cppwinrt
https://docs.microsoft.com/en-us/windows/uwp/cpp-and-winrt-apis/macros
https://devblogs.microsoft.com/oldnewthing/20210208-00/?p=104812

3/3

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

