
1/4

June 15, 2022

An initial look at the mechanics of how COM marshaling
is performed

devblogs.microsoft.com/oldnewthing/20220615-00

Raymond Chen

Last time, we looked at the usage patterns for manually-marshaled interfaces. Today, we’ll

look at the contract from the other side.

A marshaler has to implement a number of methods, which break down nicely into three

groups:

Method Operation Group

Get Unmarshal Class Report the object to create when unmarshaling. Marshaling

Get Marshal Size Max Calculate how much memory is needed.

Marshal Interface Generate the marshaling data.

Unmarshal Interface Load object from marshaling data. Unmarshaling

Release Marshal Data Clean up marshaling data. Cleaning up

Disconnect Object Shut down the unmarshaled object.

The general sequence of operations goes like this:

Marshaling an object (happens in the source context):

COM asks Get Unmarshal Class for the class ID to create when unmarshaling.

COM asks Get Marshal Size Max how much memory will be needed for the

marshaling data.

COM allocates the required amount of data.

COM asks Marshal Interface to produce that data into a provided stream.

https://devblogs.microsoft.com/oldnewthing/20220615-00/?p=106753
https://devblogs.microsoft.com/oldnewthing/20220614-00/?p=106750

2/4

Unmarshaling an object (happens in the destination context):

COM creates the unmarshaler object previously specified by Get Unmarshal ‐

Class .

COM calls Unmarshal Interface so the unmarshaler object can produce a new

object from the marshal data that it had previously generated by its Marshal ‐

Interface method. (In most cases, the unmarshaler uses itself as the produced

object.)

Cleaning up:

COM calls Release Marshal Data on any thread to tell the unmarshaler to clean

up any resources associated with the marshaled data. (The documentation says

that under rare conditions, COM might ask the marshaler to do the cleanup.)

COM calls Disconnect Object in the destination context to tell the

unmarshaled object that it should break any connection with the original object.

In practice, this is called only for proxies created by the standard marshaler,

because COM doesn’t know how to hunt down custom proxies.

An important note is that, as we noted last time, the Unmarshal Interface automatically

performs an internal equivalent of Release Marshal Data if the marshaling was performed

as MSHLFLAGS_NORMAL .

Let walk through these steps with an analogy: Suppose the object is an oracle, say COracle .

People can talk to the oracle, but the nature of the sense of hearing is that in order for people

to do that, they need to be standing nearby, or at least a sound source carrying their voice

needs to be nearby.

Now, suppose somebody who lives far away would like to talk to the oracle.

The COracle ‘s Get Unmarshal Class method would return the class ID for a custom

CLSID_Oracle Proxy class.

The COracle ‘s Get Marshal Size Max method would return 10, the maximum number of

digits in a Greek telephone number. (The oracle lives in Delphi.)

The COracle ‘s Marshal Interface method would buy an eSIM card, write the number of

the eSIM card on a papyrus scroll, and add the eSIM to the oracle’s mobile phone plan. (The

is a modern oracle who knows how to use a mobile phone.) For simplicity, let’s assume that

the marshaling was performed as TABLE STRONG . Associated with each eSIM is a reference

count, that is the number of active remote clients plus the number of papyrus scrolls that

have the number written on it. At the start, the reference count of the eSIM is 1 because the

number is written on a papyrus scroll.

The courier delivers the papyrus scroll to whoever it was that wanted to talk to the oracle.

The recipient unrolls the papyrus scroll, transcribes the bytes, and gives them to COM.

https://en.wikipedia.org/wiki/Pythia

3/4

COM looks at the bytes of the stream and says “Okay, it says here that I need to create a

CLSID_Oracle Proxy object.” COM therefore creates a COracle Proxy object, in an

uninitialized state.

COM then calls the COracle Proxy ‘s Unmarshal Interface with the remaining bytes of

the stream. That method takes the ten digits of the oracle’s eSIM card and commits them to

memory. It calls the number (including the +30 dialing prefix if the proxy is outside Greece),

and says, “Hi, this is COracle Proxy . Just telling you that there’s somebody over here who

wants to talk to you.” The oracle increments the reference count on the eSIM number.

Since the marshaling was done as TABLE STRONG , the courier can deliver the papyrus scroll

to another client, and the unmarshal ceremony is repeated.

At some point, the papyrus scroll will be disposed of. But before they perform a ceremonial

burning, they must call Co Release Unmarshal Data . That function creates a new instance of

the unmarshaler object CLSID_Oracle Proxy and this time calls the Release Marshal ‐

Data method. That method retrieves the phone number, calls it, and tells the oracle, “I’m

destroying the papyrus scroll now.” The oracle decrements the reference count on the eSIM

and since it is not yet zero, she doesn’t cancel the eSIM card yet.

Now, it’s also possible that the courier was unable to deliver the papyrus scroll to the remote

client (maybe they moved and left no forwarding address). In that case, the courier is the one

who calls Co Release Marshal Data before destroying the papyrus scroll. The courier might

do this when they reach the remote client’s home and finds that the house is empty. The

courier might do this even before getting to the remote client’s house, because the entire city

has been burnt to the ground by an invading army. Or the courier might do this even before

leaving the oracle because they realize that the remote client’s address is outside his delivery

area. Whatever the reason, the Release Marshal Data function extracts the phone number

and calls the oracle to say, “I’m destroying the papyrus scroll now”. In this case, the oracle

decrements the reference count on the eSIM to zero, so she cancels the eSIM account and

removes it from her mobile phone plan.

Anyway, assuming the courier reaches the destination and set up an oracle proxy, we are now

in the state where the remote client can now ask questions to the COracle Proxy , and the

oracle proxy will pick up the phone, call the oracle at Delphi, and relay the question and its

answer.

Eventually, the remote client decides that they are finished asking questions and Release s

the oracle proxy. The oracle proxy makes one last call to the oracle, saying, “The client is

finished asking questions. You can cancel the account as soon as I hang up.” Once the call

ends, the oracle decrements the reference count on the eSIM, and if it goes to zero, then she

cancels the eSIM account and deletes it from her mobile phone plan.

4/4

The oracle herself might decide that she wants to retire. In that case, the oracle asks COM to

disconnect all remote clients, and then cancels all of her eSIM accounts and dramatically

throws her mobile phone into a fire. (There’s a lot of burning in a fire in my imaginary

version of ancient Greece.)

COM finds all of the oracle proxies associated with the remote client and calls the

Disconnect Object method. Each oracle proxy makes a mental note that the oracle has

retired, and the next time their remote client says, “Hey, please ask the oracle a question for

me,” the oracle proxy can say “Sorry, the oracle has retired. She is no longer accepting

questions.”

Next time, we’ll use this understanding to start writing our own marshaler.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

