
1/3

June 16, 2022

The skeleton marshaler that does default marshaling
devblogs.microsoft.com/oldnewthing/20220616-00

Raymond Chen

Last time, we took an initial look at the mechanics of how COM marshaling is performed.

Today, we’ll build a custom marshaler that provides no custom behavior. This sounds silly,

but it’s useful because we can use it as a starting point for custom behavior.

https://devblogs.microsoft.com/oldnewthing/20220616-00/?p=106757
https://devblogs.microsoft.com/oldnewthing/20220615-00/?p=106753

2/3

struct MyClass : public IMarshal /* ... and other interfaces */
{
 // QueryInterface, AddRef, and Release left as an exercise

 IUnknown* CastToUnknown() { return static_cast<IMarshal*>(this); }

 STDMETHODIMP GetUnmarshalClass(
 REFIID riid, void* pv, DWORD dwDestContext,
 void* pvDestContext, DWORD mshlflags,
 CLSID *clsid)
 {
 ComPtr<IMarshal> marshal;
 RETURN_IF_FAILED(CoGetStandardMarshal(riid, CastToUnknown(), dwDestContext,
 pvDestContext, mshlflags, &marshal));
 RETURN_IF_FAILED(marshal->GetUnmarshalClass(riid, pv, dwDestContext,
 pvDestContext, mshlflags, clsid));
 return S_OK;
 }

 STDMETHODIMP GetMarshalSizeMax(
 REFIID riid, void* pv, DWORD dwDestContext,
 void* pvDestContext, DWORD mshlflags,
 LPDWORD size)
 {
 ComPtr<IMarshal> marshal;
 RETURN_IF_FAILED(CoGetStandardMarshal(riid, CastToUnknown(), dwDestContext,
 pvDestContext, mshlflags, &marshal));
 RETURN_IF_FAILED(marshal->GetMarshalSizeMax(riid, pv, dwDestContext,
 pvDestContext, mshlflags, size));
 return S_OK;
 }

 STDMETHODIMP MarshalInterface(
 IStream* pstm,
 REFIID riid, void* pv, DWORD dwDestContext,
 void* pvDestContext, DWORD mshlflags)
 {
 ComPtr<IMarshal> marshal;
 RETURN_IF_FAILED(CoGetStandardMarshal(riid, CastToUnknown(), dwDestContext,
 pvDestContext, mshlflags, &marshal));
 RETURN_IF_FAILED(marshal->MarshalInterface(pstm, riid, pv, dwDestContext,
 pvDestContext, mshlflags));
 return S_OK;
 }

The interfaces on the marshaling side ask the system, “Hey, what marshaler would you have

used for this object if it didn’t do custom marshaling?”¹ The MyClass object will probably

implement interfaces beyond IMarshal , so we can’t just pass this because that will result

in an ambiguous conversion. We provide a custom CastToUnknown() method that picks

3/3

one of the IUnknown* base classes arbitrarily. If you’re using WRL, then the

CastToUnknown() method has been provided for you; otherwise, you get to write one of

your own.²

The methods on the unmarshaling and cleanup side are even simpler: Your unmarshaling

and cleanup functions will never be called, because the unmarshaling and cleanup are

performed by the unmarshal class, which we delegated to the standard marshaler. Therefore,

you can just return “Huh? Shouldn’t ever get here.”

 STDMETHODIMP UnmarshalInterface(IStream* pstm, REFIID riid, void** ppv)
 {
 *ppv = nullptr;
 return E_UNEXPECTED;
 }

 STDMETHODIMP ReleaseMarshalData(IStream* pstm)
 {
 return E_UNEXPECTED;
 }

 STDMETHODIMP DisconnectObject(DWORD dwReserved)
 {
 return E_UNEXPECTED;
 }
};

Next time, we’ll take this skeleton and use it to implement marshal-by-value.

¹ The Co Get Standard Marshal function probes the provided object’s unmarshal class,

which creates recursion because it will call Get Unmarshal Class again, which we delegate

back out to the standard marshaler. Fortunately, the system has a recursion detector and

figures that if the call to the Co Get Standard Marshal function, then the object’s IMarshal

is just trying to delegate to the standard one.

² You are probably not going to implement any interfaces that derive from IMarshal , so the

version provided here will probably work fine: The cast to IMarshal* is almost certainly

unambiguous. However, I hid it inside a call to CastToUnknown so that it won’t look like I’m

saying “Oh, the second parameter to Co Get Standard Marshal must be an IMarshal* . It

doesn’t. It just needs to be an IUnknown* .

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

