
1/5

June 24, 2022

The case of the mysterious over-release from deep inside
the marshaling infrastructure

devblogs.microsoft.com/oldnewthing/20220624-00

Raymond Chen

A customer had a reference-counting bug where a certain scenario caused a COM object to be

over-released. We started by taking a Time Travel Trace and gathering all the points where

the AddRef or Release methods were called.

The Time Travel Debugging object model makes it easy to find all the places a method was

called and print the results in a nice table.

0:040> dx -g @$cursession.TTD.Calls("contoso!CWidget::AddRef").Where(c =>
(__int64)c.Parameters[0]==0x1a792dd0).OrderBy(c => c.TimeStart).Select(c => new
{TimeStart = c.TimeStart, RefCount = c.ReturnValue, ThreadId = c.ThreadId})

This expression breaks down as follows:

@$cursession.TTD.Calls("contoso!CWidget::AddRef") — Find all the calls to

this function

.Where(c => (__int64)c.Parameters[0]==0x1a792dd0) — Filtered to the calls

where the this pointer (the invisible first parameter) is a specific value

.OrderBy(c => c.TimeStart) — Sorted chronologically

.Select(c => new {TimeStart = c.TimeStart, RefCount = c.ReturnValue,

ThreadId = c.ThreadId}) — Print these fields

Therefore, the command finds all the times in the trace where contoso!CWidget::AddRef

was called for the object that was over-released, sorts them chronologically, and prints the

timestamp, the resulting reference count, and the thread that issued the call.

A similar command finds all the calls to CWidget::Release .

Sort the two lists together by position to get a chronology of events.

Now we can use the !tt command to go to each of those time positions and get a stack

trace. Many of the AddRef and Release calls are easily paired because the calls are made

from the same function. Two of the AddRef calls are never released beause they correspond

to references being held by objects that are still live at the end of the trace.

https://devblogs.microsoft.com/oldnewthing/20220624-00/?p=106786
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/time-travel-debugging-overview

2/5

And then there is the batch of unmatched calls, and we need to match them up and figure out

which are the unmatched Release calls.

The unmatched AddRef calls comes from combase!CDestObjectWrapper::

MarshalInterface , which is an internal function called from CoMarshal Interface .

There are two categories of unmatched Release calls. One of them belongs to the

Release of another object CNamedWidget that contains the CWidget as a member, and

another comes from combase!CStaticMarshaler::ReleaseMarshalData , which is an

internal function called from CoRelease Marshal Data .

And it turns out that the two categories of Release calls collectively outnumber the number

of unmatched AddRef calls. So one of those categories of calls is wrong, but which one?

From what we learned earlier, when a normal-marshaled object is unmarshaled, you do not

observe any change to the reference count because the ownership of the reference count is

transfered from the stream directly to the unmarshaled object. A breakpoint on the reference

count is not going to fire because there is no change to the reference count. It happens behind

your back.

If an object is normal-marshaled, it should either be unmarshaled, or the marshal data

should be released, but here we’re doing both, which is the source of the double-release. Why

is it doing both?

The stack for the AddRef looks like this:

contoso!CWidget::AddRef
contoso!CWidget::QueryInterface+0x31
combase!CStaticMarshaler::MarshalInterface+0x728
combase!CDestObjectWrapper::MarshalInterface+0x2f4
combase!CoMarshalInterface+0x2dc
contoso!CNamedWidget::MarshalInterface+0x208b63
combase!CDestObjectWrapper::MarshalInterface+0x2f4
combase!CoMarshalInterface+0x2dc
combase!GitRegisterHlp+0x2af
combase!CGIPTable::RegisterInterfaceInGlobalHlp+0x292
combase!CGIPTable::RegisterInterfaceInGlobal+0x1b
combase!RoGetAgileReference+0x8a1

The marshaling request is coming from the creation of an agile reference, and that is

marshaling the CNamedWidget , which is in turn marshaling the CWidget . After some

digging, we noticed an anomaly: For the outer call to Co Marshal Interface coming from

Git Register Hlp , the flags are

https://devblogs.microsoft.com/oldnewthing/20220622-00/?p=106774

3/5

rax=00007ffb71634d20 rbx=0000000000000000 rcx=00000000042ea568
rdx=00007ffb5a43cbb0 rsi=0000000000000000 rdi=0000000017c009e8
rip=00007ffb7143ebf0 rsp=00000000042ea4d8 rbp=00000000042ea5b1
r8=000000001ac11338 r9=0000000000000003 r10=0000000000000000
r11=3ff8000000000003 r12=0000000000000001 r13=00007ffb5a43cbb0
r14=0000000017c00a38 r15=00000000042ea678
iopl=0 nv up ei pl nz na po nc
cs=0033 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00000206
combase!CoMarshalInterface:
00007ffb`7143ebf0 4055 push rbp
0:000> dps @rsp+28 L2
00000000`042ea500 00000000`00000000
00000000`042ea508 00007ffb`00000001

From this we see that the parameters passed to Co Marshal Interface are

Parameter Passed in Value Notes

pStm rcx 0x42ea568

riid rdx 0x00007ffb5a43cbb0 The interface being
marshaled

pUnk r8 0x1ac11338 The CNamed Widget being
marshaled

dwDestContext r9 3 MSHCTX_INPROC

pvDestContext [rsp+28] nullptr

mshlflags [rsp+30] 1 MSHLFLAGS_TABLESTRONG

However, when the CNamed Widget goes to marshal the inner CWidget , we see this:

rax=0000000000000000 rbx=000000001ac11330 rcx=00000000042ea568
rdx=00007ffb6d31c4b0 rsi=0000000000000003 rdi=00000000042ea568
rip=00007ffb7143ebf0 rsp=00000000042ea178 rbp=00000000042ea2d0
r8=000000001a792dd0 r9=0000000000000003 r10=00000000161a3080
r11=000000000cf59986 r12=00000000042ea568 r13=0000000000000004
r14=0000000000000001 r15=00007ffb5a43cbb0
iopl=0 nv up ei pl zr na po nc
cs=0033 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00000246
combase!CoMarshalInterface:
00007ffb`7143ebf0 4055 push rbp
0:000> dps @rsp+28 L2
00000000`042ea1a0 00000000`00000000
00000000`042ea1a8 00000000`00000000

Parameter Passed in Value Notes

4/5

pStm rcx 0x42ea568

riid rdx 0x00007ffb6d31c4b0 The interface being
marshaled

pUnk r8 0x1a792dd0 The CWidget being
marshaled

dwDestContext r9 3 MSHCTX_INPROC

pvDestContext [rsp+28] nullptr

mshlflags [rsp+30] 0 MSHLFLAGS_NORMAL ← huh?

Okay, that seems awfully strange. The outer object is being strong-marshaled but the inner

object is only normal-marshaled.

That explains why we are seeing a double-release of the inner object: The Ro Get Agile ‐

Reference function strong-marshaled the object, which means that it is going to call both

Unmarshal Interface and Release Marshal Data . However, the CWidget was normal-

marshaled, which means that it expected to receive either Unmarshal Interface or

Release Marshal Data , but not both. If you call both, then the marshal data gets double-

destroyed, and that’s where the double-release is coming from.

Here’s a sketch of the marshaling code for the CNamed Widget :

HRESULT CNamedWidget::MarshalInterface(...)
{
 if (⟦want to marshal by shallow copy⟧) {
 RETURN_IF_FAILED(IStream_WriteStr(pstm, m_name));
 RETURN_IF_FAILED(CoMarshalInterface(pstm, __uuidof(m_widget.Get()),
m_widget.Get(),
 dwDestCtx, pvDestCtx, MSHLFLAGS_NORMAL));
 return S_OK;
 }
 ⟦delegate to standard marshaler⟧
}

Observe that the Marshal Interface method always marshals the CWidget with

MSHLFLAGS_NORMAL instead of using the same marshal flags that it was given. That’s the

source of the problem.

The customer confirmed that making that one change fixed their problem.

Bonus chatter: Here are the other marshaling and unmarshaling methods:

5/5

HRESULT CNamedWidget::UnmarshalInterface(...)
{
 *ppv = nullptr;
 RETURN_IF_FAILED(IStream_ReadStr(pstm, &m_name));
 RETURN_IF_FAILED(CoUnmarshalInterface(pstm, IID_PPV_ARGS(&m_widget)));
 RETURN_IF_FAILED(QueryInterface(riid, ppv));
 return S_OK;
}

HRESULT CNamedWidget::ReleaseMarshalData(...)
{
 if (!m_widget) {
 // Read the string and throw it away.
 CComHeapPtr<wchar_t> name;
 RETURN_IF_FAILED(IStream_ReadStr(pstm, &name));
 RETURN_IF_FAILED(CoReleaseMarshalData(pstm));
 }
 return S_OK;
}

You might notice that there’s also a bug in the Release Marshal Data method: That method

is supposed to clean up the marshal data unconditionally, but this version does so only if the

unmarshaler hasn’t yet been used to unmarshal anything: It releases the marshal data only if

the m_widget is still empty. Furthermore, in the case where it decides not to release the

marshal data, it doesn’t even bother to move the stream pointer past the marshal data. It just

leaves the stream pointer where it was, causing the next object in the stream to receive the

CNamed Widget ‘s unmarshal data instead of the data it expects.

Fortunately, in practice, the unmarshaler is nearly always empty, because Co Release ‐

Marshal Data will create a brand new unmarshaler in order to call its Release Marshal ‐

Data . So this bug ends up masked, but they made a note to fix it anyway.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

