
1/3

July 22, 2022

Using C++/WinRT’s final_release to control which thread
destructs your object

devblogs.microsoft.com/oldnewthing/20220722-00

Raymond Chen

It is often that case that an object is intended to be used only from a single thread,

particularly if it is tied to the user interface somehow, since user interface objects are

generally single-threaded. On the other hand, it may have to subscribe to events that are

raised from background threads.

namespace winrt
{
 using namespace Windows::System::Power;
}

struct MyViewModel : MyViewModelT<MyViewModel>
{
 ...

 winrt::fire_and_forget OnEnergySaverStatusChanged(
 winrt::IInspectable const&, winrt::IInspectable const&)
 {
 auto lifetime = get_strong();
 co_await winrt::resume_foreground(Dispatcher());
 m_isEnergySaverOn = (winrt::PowerManager::EnergySaverStatus()
 == winrt::EnergySaverStatus::On);
 RaiseProperyChangeEvent(L"IsEnergySaverOn");
 }

 winrt::EnergySaverStatusChanged_revoker m_energySaverStatusChangedToken =
 winrt::PowerManager::EnergySaverStatusChanged(
 { get_weak(), &MyViewModel::OnEnergySaverStatusChanged });
};

In the above example, we have a view model that tracks the system Energy Saver status. The

change notification for this is raised on a background thread, so we need to switch to the

foreground thread before doing our calculations and raising the property-change event.

https://devblogs.microsoft.com/oldnewthing/20220722-00/?p=106883

2/3

This pattern is common for many types of notifications: Receive the notification on a

background thread and immediately switch to the UI thread to process it. Doing all the work

on the UI thread avoids race conditions.

But there’s a small problem here: There’s a race condition if the foreground thread completes

its work before the background thread releases its temporary strong reference.

To make the weak and strong references more explicit, let me rewrite the code this way:

struct MyViewModel : MyViewModelT<MyViewModel>
{
 ...

 winrt::EnergySaverStatusChanged_revoker m_energySaverStatusChangedToken =
 winrt::PowerManager::EnergySaverStatusChanged(
 [weak = get_weak()](auto&&, auto&&)
 -> winrt::fire_and_forget {
 if (auto strong = weak.get()) {
 strong->Dispatcher().RunAsync([strong] {
 m_isEnergySaverOn = (winrt::PowerManager::EnergySaverStatus()
 == winrt::EnergySaverStatus::On);
 RaiseProperyChangeEvent(L"IsEnergySaverOn");
 });
 }
 });
};

Now we can follow the reference counts. Initially the view model’s reference count is 1

because the view has a reference to it.

UI thread Background thread Reference
count

 EnergySaverStatusChanged 1

 get strong reference 2

 capture strong reference into
lambda

3

View tears down

View model released 2

 RunAsync

update m_isEnergySaverOn

raise property change event

3/3

destruct strong reference inside
lambda

 1

 destruct strong reference 0

In this unfortunate sequence of events, the last reference is released on the background

thread, and the view model therefore runs its destructor on the background thread, which is

bad news because the view model really is a single-threaded object, and its destructor is

going to assume that it is running on the UI thread. The reference on the background thread

exists for the sole purpose of getting control back to the UI thread, but it ends up being the

one holding the bag when everything cleans up.

The fix here is to use final_release to get control back to the UI thread for the purpose

of destructing there.

struct MyViewModel : MyViewModelT<MyViewModel>
{
 ...

 winrt::fire_and_forget final_release(std::unique_ptr<MyViewModel> self)
 {
 co_await winrt::resume_foreground(self->Dispatcher());
 // destruct the object on the UI thread
 }

 ...
};

If your implementation class has a method called final_release , it will be called with a

std::unique_ptr holding the object that is about to be destructed. This gives you a chance

to do something just before destruction, and a common reason for doing this is to move the

unique_ptr to the UI thread, so that when it destructs, the underlying object destructs on

the UI thread.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

