
1/7

July 26, 2022

The AArch64 processor (aka arm64), part 1: Introduction
devblogs.microsoft.com/oldnewthing/20220726-00

Raymond Chen

The 64-bit version of the ARM architecture is formally known as AArch64. It is the 64-bit

version of classic 32-bit ARM, which has been retroactively renamed AArch32.

Even though the architecture formally goes by the name AArch64, many people (including

Windows) call it arm64. Even more confusing, the instruction set is called A64. (The 32-bit

ARM instruction sets have also been retroactively renamed: Classic ARM is now called A32,

and Thumb-2 is now called T32.)

AArch64 differs from AArch32 so much that I’m going to cover it fresh rather than treating it

as an extension of AArch32. That said, I will nevertheless call out notable points of difference

from AArch32.

No more Thumb mode

AArch64 is an extension of the classic ARM instruction set, not an extension of Thumb-2. So

we’re back to fixed-size 32-bit instructions (aligned on 4-byte boundaries). No more

gymnastics with low registers and high registers, or using non-intuitive instructions to avoid

a 32-bit encoding, or remembering to set the bottom bit on code addresses to avoid

accidentally switching into classic mode.

A note for those familiar with the classic ARM instruction set: One thing that did not get

carried forward was arbitrary predication. The answers to this StackOverflow question dig

into the reasons why predication was removed. Short version: Predication is rarely used, it

consumes a lot of opcode space, it doesn’t interact well with out-of-order execution, and

branch prediction is almost as good.

Data sizes

The architectural terms for data sizes are the same as AArch32.

Term Size

https://devblogs.microsoft.com/oldnewthing/20220726-00/?p=106898
https://stackoverflow.com/questions/22168992/why-are-conditionally-executed-instructions-not-present-in-later-arm-instruction

2/7

byte 8 bits

halfword 16 bits

word 32 bits

doubleword 64 bits

The processor supports both big-endian and little-endian operation. Windows uses it

exclusively in little-endian mode. AArch64 lost the Aarch32 SETEND instruction for

switching endianness from user mode. Not that Windows supported it anyway.

Registers

Everything has doubled. The general-purpose registers are now 64 bits wide instead of 32.

And the number of such registers has doubled from 16 to 32 okay just 31. The encoding that

would correspond to register 31 has been reused for other purposes. So not quite doubled.

Register Preserved? Notes

x0 No Parameter 1, return value

x1 No Parameter 2

x2 No Parameter 3

x3 No Parameter 4

x4 No Parameter 5

x5 No Parameter 6

x6 No Parameter 7

x7 No Parameter 8

x8 No

x9 No

x10 No

x11 No

x12 No

x13 No

x14 No

3/7

x15 No

x16 (xip0) Volatile Intra-procedure call scratch register

x17 (xip1) Volatile Intra-procedure call scratch register

x18 (xpr) read-only TEB

x19 Yes

x20 Yes

x21 Yes

x22 Yes

x23 Yes

x24 Yes

x25 Yes

x26 Yes

x27 Yes

x28 Yes

x29 (fp) Yes frame pointer

x30 (lr) No link register

register “31” usually represents sp or zr, depending on instruction

The link register is architectural; the rest are convention.

You can refer to the least significant 32 bits of each 64-bit register by changing the leading x

to a w, so we have w0 through w30. If an instruction targets a w register, the result is zero-

extended to fill the x register.¹

Particularly notable is that the stack pointer sp and program counter pc are no longer

general-purpose registers, like they were in AArch32. The registers still exist, but they are

treated as special registers rather than being encoded in the same way as the other general-

purpose registers.

In AArch64, the pc special register reads as the address of the instruction being executed,

rather than being four bytes ahead, as it was in AArch32. The extra +4 in AArch32 was an

artifact of the internal pipelining of the original ARM and became a backward compatibility

constraint even as the pipeline depth changed.

4/7

Windows requires that the stack remain 16-byte aligned, and it enables hardware

enforcement of this requirement. The 32-bit subregister of sp is called wsp, although it is of

no practical use. (The 64-bit register is still called sp, not xsp. Go figure.)

There is a 16-byte red zone below the stack pointer, but it’s reserved for code analysis.

Intrusive profilers inject assembly language fragments into compiled code to update profiling

information, and they need some space to store two registers so they can free up some

registers to do their profiling work.

The xip0 and xip1 registers are volatile because they are used to assist with branch

instructions that try to branch to an address that is out of range. We’ll see later that these

registers are also used by function prologues and epilogues.

There is a new xzr pseudo-register (and its 32-bit alias wzr) which reads as zero, and writes

are ignored. As I noted in the above table, if an instruction encodes a register number of 31,

then a special behavior kicks in, typically by treating mythical register 31 as an alias for sp or

zr. Generally speaking, when being used as a base address register, imaginary register 31

represents sp, but when used for arithmetic or as a destination register, it represents zr.²

In instruction descriptions, I will use these shorthands:

Shorthand Meaning

Xn Any x# register

Xn/zr Any x# register or xzr

Xn/sp Any x# register or sp

Wn Any w# register

Wn/zr Any w# register or wzr

Wn/sp Any w# register or wsp

Rn Any x# or w# register

Rn/zr Any x# register, w# register, xzr or wzr

The floating point registers have been reorganized. They have doubled in size (to 128 bits) as

well as in number, and the single-precision registers are no longer paired up.

Register Preserved? Notes

v0 No Parameter 1, return value

5/7

v1 No Parameter 2

v2 No Parameter 3

v3 No Parameter 4

v4 No Parameter 5

v5 No Parameter 6

v6 No Parameter 7

v7 No Parameter 8

v8 through v15 Low 64 bits only Upper 64 bits are not preserved

v16 through v31 No

Each floating point register can be viewed in multiple ways. The partial registers are stored in

the least significant bits of the full register.

Name Meaning Notes

v# SIMD vector

q# 128-bit value quad precision

d# 64-bit value double precision

s# 32-bit value single precision

h# 16-bit value half precision

b# 8-bit value

The flags register is formally known as the Application Program Status Register (APSR). The

flags available to user mode are the same as in AArch32:

Mnemonic Meaning Notes

N Negative Set if the result is negative

Z Zero Set if the result is zero

C Carry Multiple purposes

V Overflow Signed overflow

6/7

Q Saturation Accumulated overflow

GE[n] Greater than or equal to 4 flags (SIMD)

The overflow flag records whether the most recent operation resulted in signed overflow. The

saturation flag is used by multimedia instructions to accumulate whether any overflow

occurred since it was last cleared. The GE flags record the result of SIMD operations. By

convention, flags are not preserved across calls.

There are a number of AArch64 features that you are extremely unlikely to see in Windows

code, such as tagged pointers, tagged memory, and pointer authentication, so I won’t cover

them here. I also won’t cover floating point instructions or SIMD instructions.

Next time, we’ll look at some of the weird transformations that can be performed inside an

instruction.

Additional references:

Code in ARM Assembly: Registers explained. An analogous series looking at AArch64

from the Apple point of view rather than Windows.

Writing ARM64 Code for Apple Platforms: The Apple ABI specification for AArch64.

¹ The Windows debugger isn’t quite sure which name to use for these registers. The

disassembler calls the registers xip0, xip1, and xpr, but the expression evaluator doesn’t

understand those names; you have to call them @x16 , @x17 , and @x18 . On the other

hand, the expression evaluator does understand @fp and @lr and refuses to acknowledge

the existence of the names @x29 and @x30 . Furthermore, the expression evaluator doesn’t

understand any of the w aliases.

² AArch64’s register 31 is similar to PowerPC’s register 0, which changes meaning depending

on the instruction. In PowerPC assembly, it was on you to keep track of which encodings

treat register 0 as a value register, and which treat it as a zero register. At least AArch64

expresses the two cases differently: If an encoding uses pseudo-register 31 to mean sp, then

you really must write sp. If you write xzr, you get an error.

PowerPC on the other hand would happily let you specify r0 even if the instruction treats it

as zero. Which was one of the jokes from the short-lived parody twitter account that mocked

PowerPC.

mscdfr - Means Something Completely Different For r0

— PowerPC Instructions (@ppcinstructions) January 21, 2015

Raymond Chen

https://eclecticlight.co/2021/06/16/code-in-arm-assembly-registers-explained/
https://developer.apple.com/documentation/xcode/writing-arm64-code-for-apple-platforms
https://devblogs.microsoft.com/oldnewthing/20180808-00/?p=99445
https://twitter.com/ppcinstructions
https://twitter.com/ppcinstructions/status/557938532401295360?ref_src=twsrc%5Etfw
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

7/7

Follow

