
1/5

August 2, 2022

The AArch64 processor (aka arm64), part 6: Bitwise
operations

devblogs.microsoft.com/oldnewthing/20220802-00

Raymond Chen

Bitwise logical operations are not normally particularly exciting, but for AArch64, they get

exciting not so much for the operations themselves but for the immediates they can encode.

Let’s get the boring part out of the way.

https://devblogs.microsoft.com/oldnewthing/20220802-00/?p=106927

2/5

 ; bitwise and with immediate
 ; Rd = Rn & imm
 and Rd/sp, Rn/zr, #imm

 ; bitwise and with shifted register
 ; Rd = Rn & (Rm with shift)
 and Rd/zr, Rn/zr, Rm/zr, shift

 ; bitwise and with immediate, set flags
 ; Rd = Rn & #imm, set flags
 ands Rd/zr, Rn/zr, #imm

 ; bitwise and with shifted register, set flags
 ; Rd = Rn & (Rm with shift), set flags
 ands Rd/zr, Rn/zr, Rm/zr, shift

 ; bitwise clear
 ; Rd = Rn & ~(Rm with shift)
 bic Rd/zr, Rn/zr, Rm/zr, shift

 ; bitwise clear, set flags
 ; Rd = Rn & ~(Rm with shift), set flags
 bics Rd/zr, Rn/zr, Rm/zr, shift

 ; bitwise or with immediate
 ; Rd = Rn | imm
 orr Rd/sp, Rn/zr, #imm

 ; bitwise or with shifted register
 ; Rd = Rn | (Rm with shift)
 orr Rd/zr, Rn/zr, Rm/zr, shift

 ; bitwise or not with shifted register
 ; Rd = Rn | ~(Rm with shift)
 orn Rd/zr, Rn/zr, Rm/zr, shift

 ; bitwise exclusive or with immediate
 ; Rd = Rn ^ imm
 eor Rd/sp, Rn/zr, #imm

 ; bitwise exclusive or with shifted register
 ; Rd = Rn ^ (Rm with shift)
 eor Rd/zr, Rn/zr, Rm/zr, shift

 ; bitwise exclusive or not with shifted register¹
 ; Rd = Rn ^ ~(Rm with shift)
 eon Rd/zr, Rn/zr, Rm/zr, shift

There are a lot of combinations here. Let’s put them in a table.

3/5

Instruction

Immediate Shifted register

to Rd/sp
 no flags

to Rd/zr
 with flags

to Rd/zr
 no flags

to Rd/zr
 with flags

AND • • • •

BIC • •

ORR • •

ORN •

EOR • •

EON •

For the instructions that set flags, the N and Z flags represent the result of the operation, and

the C and V flags are cleared.²

Stare at this table a bit and you start to see patterns.

All of the bitwise operations support a shifted register, which could be a LSL #0 to mean

“no shift”. The operations that do not complement the second input operand support an

immediate. (There’s no need to support an immediate for the complement versions, because

you can just complement the immediate.) And the AND -like operations are the only ones

which support flags. We’ll see workarounds for the lack of flags support in the other bitwise

operations when we get to control transfer.

With these instructions, we can create some pseudo-instructions:³

 tst Rn/zr, #imm ; ands zr, Rn/zr, #imm
 tst Rn/zr, Rm/zr, shift ; ands zr, Rn/zr, Rm/zr, shift

 mov Rd, #imm ; orr Rd, zr, #imm
 mov Rd, Rn/zr, shift ; orr Rd, zr, Rn/zr, shift

 mvn Rd, Rn/zr, shift ; orn Rd, zr, Rn/zr, shift

The TST pseudo-instruction performs a bitwise and of its arguments and sets flags, but

discards the result. It’s common to use a power-of-two immediate here, to test a specific bit.

The MOV instruction set a register equal to the value of another register or a supported

immediate.

The MVN instruction sets a register to the bitwise inverse of another register.

Okay, so about those immediates.

4/5

The bitwise operations encode the immediates in a very strange way. If that’s the sort of thing

that interests you, I encourage you to read Dominik Inführ’s explanation of how they are

formed for the gory details.

The short version is that the immediate can encode

a 2-bit pattern repeated 32 times,

a 4-bit pattern repeated 16 times,

an 8-bit pattern repeated 8 times,

a 16-bit pattern repeated 4 times,

a 32-bit pattern repeated 2 times, or

a 64-bit pattern repeated 1 time.

The pattern consists of a bunch of right-justified 1’s, with leading bits filled with 0’s.

Finally, after concatenating the copies of the pattern, you can rotate the whole thing to the

right by any amount.

For example, single bits are expressible in this format, because you can ask for a 64-bit

pattern consisting of a single rightmost set bit, and then rotate that single bit into the

position you like.

Conversely, all bits set except one can be generated by asking for a 64-bit pattern consisting

of 63 rightmost set bits (a single clear bit in position 63), and then rotate that 0 bit into the

position you like.

Interestingly, you cannot generate all ones or all zeros with this pattern. Fortunately, you

don’t need to. You can use zr for zero and the complement instruction with zr for ones. And

operations with all ones or all zeroes can often be simplified to another instruction anyway,

often avoiding a register dependency.

Missing instruction Replacement Note

and Rd, Rn, #0 mov Rd, #0 AND with zero is zero

and Rd, Rn, #-1 mov Rd, Rn AND with -1 is unchanged

orr Rd, Rn, #0 mov Rd, Rn OR with zero is unchanged

orr Rd, Rn, #-1 orn Rd, zr, zr OR with -1 is -1

eor Rd, Rn, #0 mov Rd, Rn EOR with zero is unchanged

eor Rd, Rn, #-1 orn Rd, zr, Rn EOR with -1 is bitwise negation

Okay, so that’s it for the bitwise logical operations. Next time, we’ll look at bit shifting.

https://dinfuehr.github.io/blog/encoding-of-immediate-values-on-aarch64/

5/5

¹ The EON instruction is new for AArch64. AArch32 does not have this opcode.

² AArch32 left C and V unchanged. My guess is that AArch64 forces both bits clear in order

to avoid partial flags updates, which creates unintended dependencies among instructions.

³ AArch64 lost the TEQ instruction from AArch32, which I noted was of limited utility.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20210608-00/?p=105290
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

