
1/3

August 8, 2022

The AArch64 processor (aka arm64), part 10: Loading
constants

devblogs.microsoft.com/oldnewthing/20220808-00

Raymond Chen

Since AArch64 uses fixed-size 32-bit instructions, you have to exercise some creativity to load

a 64-bit constant.

 ; move wide with zero
 ; Rd = imm16 << n
 ; n can be 0, 16, 32, or 48
 movz Rd, #imm16, LSL #n

 ; move wide with not
 ; Rd = ~(imm16 << n)
 ; n can be 0, 16, 32, or 48
 movn Rd, #imm16, LSL #n

 ; move wide with keep
 ; Rd[n+15:n] = imm16
 movk Rd, #imm16, LSL #n

The MOVZ instruction loads a 16-bit unsigned value into one of the four lanes of a 64-bit

destination, or one of the two lanes of a 32-bit destination. All the remaining lanes are set to

zero.

The MOVN instruction does the same thing as MOVZ , except the whole thing is bitwise

negated. (Be careful not to confuse MOVN with MVN .)

The MOVK instruction does the same thing as MOVZ , except that instead of setting the other

lanes to zero, the other lanes are left unchanged.

Loading a 32-bit value can be done in two instructions by using MOVZ to load 16 bits into

half of the register, than the MOVK into the other half.

 movz r0, #0x1234 ; r0 = 0x00001234
 movk r0, #0xABCD, LSL #16 ; r0 = 0xABCD1234

https://devblogs.microsoft.com/oldnewthing/20220808-00/?p=106953

2/3

This technique can be extended to load a 64-bit value in four steps, but that’s getting quite

unwieldy. The compiler is more likely to store the value in the code segment and use a pc-

relative addressing mode to load it.

 ; special syntax for pc-relative loads
 ldr x0, =0x123456789ABCDEF0 ; load 64-bit value
 ldr w0, =0x12345678 ; load 32-bit value

As I noted in the discussion of addressing modes, the assembler and disassembler use this

special equals-sign notation to represent a pc-relative load. It means that the value is stored

in a literal pool in the code segment, and a pc-relative load is being used to fetch it. The

assembler batches up all of these literals and emits them between functions. The pc-relative

load has a reach of ±1MB, so you are unlikely to run into the problem that you had on

AArch32, where the reach was only ±4KB, and you had to find a safe place to dump the

literals in the middle of the function.

There are quite a number of instructions that generate constants, and if you use the MOV

pseudo-instruction, the assembler will try to find one that works.

 ; load up a constant somehow
 mov Rd, #imm

Instruction Used for

add Rd, zr, #imm12 0x00000000`00000XXX

add Rd, zr, #imm12, LSL
#12

0x00000000`00XXX000

sub Wd, wzr, #imm12 0x00000000`FFFFFXXX

sub Wd, wzr, #imm12,
LSL #12

0x00000000`FFXXXFFF

sub Xd, xzr, #imm12 0xFFFFFFFF`FFFFFXXX

sub Xd, xzr, #imm12,
LSL #12

0xFFFFFFFF`FFXXXFFF

movz Rd, #imm16 0x00000000`0000XXXX

movz Rd, #imm16, LSL
#16

0x00000000`XXXX0000

movz Rd, #imm16, LSL
#32

0x0000XXXX`00000000

movz Rd, #imm16, LSL
#48

0xXXXX0000`00000000

3/3

movn Wd, #imm16 0x00000000`FFFFXXXX

movn Wd, #imm16, LSL
#16

0x00000000`XXXXFFFF

movn Xd, #imm16 0xFFFFFFFF`FFFFXXXX

movn Xd, #imm16, LSL
#16

0xFFFFFFFF`XXXXFFFF

movn Xd, #imm16, LSL
#32

0xFFFFXXXX`FFFFFFFF

movn Xd, #imm16, LSL
#48

0xXXXXFFFF`FFFFFFFF

orr Xd, xzr, #imm Value can be expressed as a Bitwise operation constant

orr Wd, wzr, #imm Value can be expressed as lower 32 bits of a Bitwise
operation constant

A common type of sort-of constant is the address of a global variable. It’s a constant whose

value isn’t discovered until runtime. We’ll look at those next time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

