
1/5

August 12, 2022

The AArch64 processor (aka arm64), part 14: Barriers
devblogs.microsoft.com/oldnewthing/20220812-00

Raymond Chen

Barriers are important on ARM-family systems because it has a weak memory model

compared to the x86 series that most people are familiar with.

We start with the explicit barrier instructions:

 dmb ish ; data memory barrier
 dsb ish ; data synchronization barrier
 isb sy ; instruction synchronization barrier

The data memory barrier ensures that all preceding writes are issued before any subsequent

memory operations (including speculative memory access). In acquire/release terms, it is a

full barrier. The instruction does not stall execution; it just tells the memory controller to

preserve externally-visible ordering. This is probably the only barrier you will ever seen in

user-mode code.

The data synchronization barrier is a data memory barrier, but with the additional behavior

of stalling until all outstanding writes have completed. This is typically used before changing

memory mappings, such as during context switches, to ensure that any outstanding writes

complete to the original memory before it gets unmapped.

The instruction synchronization barrier flushes instruction prefetch. This is typically used if

you have generated new code, say by jitting it or paging it in from disk.

All of these barrier instructions take a parameter known as the synchronization domain. In

practice, they will be the values I gave in the examples above.

There are some other niche barriers like the “consumption of speculative data barrier”

(CSDB) and “physical speculative store bypass barrier” (PSSBB), which I won’t bother

going into because you’re not going to see them.

By default, the memory access instructions do not impose any special ordering. But there are

variations that let you request acquire or release semantics. We saw the general pattern in the

bonus chatter last time:

https://devblogs.microsoft.com/oldnewthing/20220812-00/?p=106968
https://randomascii.wordpress.com/2020/11/29/arm-and-lock-free-programming/

2/5

A – perform the load with acquire semantics

L – perform the store with release semantics

AL – perform the load with acquire semantics and the store with release semantics

The AL version applies only to load-modify-store instructions, which are all optional. But

the acquire load and release store are supported by all processors.

 ; load acquire
 ldarb Wt/zr, [Xn/sp] ; byte
 ldarh Wt/zr, [Xn/sp] ; halfword
 ldar Rt/zr, [Xn/sp] ; word or doubleword
 ; no register-pair version

 ; load acquire exclusive
 ldaxrb Wt/zr, [Xn/sp] ; byte
 ldaxrh Wt/zr, [Xn/sp] ; halfword
 ldaxr Wt/zr, [Xn/sp] ; word or doubleword
 ldaxp Rt/zr, [Xn/sp] ; pair

 ; store release
 stlrb Wt/zr, [Xn/sp] ; byte
 stlrh Wt/zr, [Xn/sp] ; halfword
 stlr Wt/zr, [Xn/sp] ; word or doubleword
 ; no register-pair version

 ; store release exclusive
 stlxrb Ws/zr, Wt/zr, [Xn/sp] ; byte
 stlxrh Ws/zr, Wt/zr, [Xn/sp] ; halfword
 stlxr Ws/zr, Wt/zr, [Xn/sp] ; word or doubleword
 stlxp Rs/zr, Wt/zr, [Xn/sp] ; pair

These special acquire and release versions are handy in the load-locked/store-conditional

pattern because they reduce the need for issue explicit barriers.

Here’s how the gcc compiler generates the code:

3/5

 ; sequential consistency interlocked increment and
 ; acquire-release interlocked increment
@@: ldaxr w8, [x0] ; load acquire from x0
 add w8, w8, 1 ; increment
 stlxr w9, w8, [x0] ; store it back with release
 cbnz @B ; if failed, try again

 ; acquire-only interlocked increment
@@: ldaxr w8, [x0] ; load acquire from x0
 add w8, w8, 1 ; increment
 stxr w9, w8, [x0] ; store it back (no release)
 cbnz @B ; if failed, try again

 ; release-only interlocked increment
@@: ldxr w8, [x0] ; load (no acquire) from x0
 add w8, w8, 1 ; increment
 stlxr w9, w8, [x0] ; store it back with release
 cbnz @B ; if failed, try again

 ; relaxed interlocked increment
@@: ldxr w8, [x0] ; load from x0
 add w8, w8, 1 ; increment
 stxr w9, w8, [x0] ; store it back
 cbnz @B ; if failed, try again

On the other hand, the Microsoft compiler adds additional barriers:

4/5

 ; sequential consistency interlocked increment and
 ; acquire-release interlocked increment
@@: ldaxr w8, [x0] ; load acquire from x0
 add w8, w8, 1 ; increment
 stlxr w9, w8, [x0] ; store it back with release
 cbnz @B ; if failed, try again
 dmb ish ; memory barrier (?)

 ; acquire-only interlocked increment
@@: ldaxr w8, [x0] ; load acquire from x0
 add w8, w8, 1 ; increment
 stxr w9, w8, [x0] ; store it back
 cbnz @B ; if failed, try again
 dmb ish ; memory barrier (?)

 ; release-only interlocked increment
@@: ldaxr w8, [x0] ; load acquire from x0 (?)
 add w8, w8, 1 ; increment
 stlxr w9, w8, [x0] ; store it back with release
 cbnz @B ; if failed, try again

 ; no-fence interlocked increment
@@: ldxr w8, [x0] ; load from x0
 add w8, w8, 1 ; increment
 stxr w9, w8, [x0] ; store it back
 cbnz @B ; if failed, try again

Older versions of the Microsoft compiler used a spurious release on the stlxr when

generating an acquire-only interlocked increment, but it appears to be fixed in 19.14. The

spurious acquire on the release-only interlocked increment, and the mystery memory barrier

instructions, are still there in 19.32.

Not sure what the extra barriers are for. Maybe there’s something special about the Windows

ABI that requires them? Maybe there’s some subtlety in the architecture that I’m not aware

of? I don’t know.

While I’m here, I may as well mention this other instruction that isn’t a barrier, but it’s

closely related:

 ; prefetch memory
 prfm kind, [...]
 prfum kind, [...] ; force unscaled offset

The addressing mode can include pre- and post-increment.

The kind is a concatenation of a Type, Target, and Policy.

Category Value Meaning

5/5

Type PLD Prefetch for load

PLI Prefetch instruction

PLS Prefetch for store

Target L1 L1 cache

L2 L2 cache

L3 L3 cache

Policy KEEP Temporal (load into cache normally)

STRM Streaming, non-temporal (data will be used only once)

For example, PLDL3STRM means “Prefetch for load into L3 cache for one-time use.”

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

