
1/4

August 15, 2022

The AArch64 processor (aka arm64), part 15: Control
transfer

devblogs.microsoft.com/oldnewthing/20220815-00

Raymond Chen

We start with the unconditional relative branch.

 b label ; unconditional branch

The reach of the relative branch is around ±128MB. If the branch target is more than 128MB

away, then the linker will modify the relative branch to point to a “trampoline”, which we’ll

discuss a little later.

The relative branch instruction can be conditionalized on the status flags. They are the same

status flags used by AArch32.

Condition Meaning Evaluation Notes

EQ equal Z = 1

NE not equal Z = 0

CS carry set C = 1

HS high or same unsigned greater than or equal

CC carry clear C = 0

LO low unsigned less than

MI minus N = 1 signed negative

PL plus N = 0 signed positive or zero

VS overflow set V = 1 signed overflow

VC overflow clear V = 0 no signed overflow

HI high C = 1 and Z = 0 unsigned greater than

https://devblogs.microsoft.com/oldnewthing/20220815-00/?p=106975

2/4

LS low or same C = 0 or Z = 1 unsigned less than or equal

GE greater than or equal N = V signed greater than or equal

LT less than N ≠ V signed less than

GT greater than Z = 0 and N = V signed greater than

LE less than or equal Z = 1 or N ≠ V signed less than

AL always always true unconditional

Aside from AL ,¹ the conditions come in pairs, and toggling the bottom bit negates the

condition, which is conveniently kept in the bottom bit of the instruction, so if you want to

reverse the sense of a branch, you can toggle the bottom bit. And if you want to replace the

condition, you can replace the bottom nibble.

The conditions are named after the behavior that is expected if they come directly after a

CMP instruction. For example, a BEQ instruction that comes directly after a CMP is a

conditional branch that is taken if the comparison was between two equal values.

The conditional relative branches have a reach of ±1MB.

There are special conditional branch instructions for testing whether a register or bit is zero.

 ; compare and branch if zero/nonzero
 cbz Rn, label ; branch if Rn == 0
 cbnz Rn, label ; branch if Rn != 0

 ; test bit and branch if zero/nonzero
 tbz Rn, #imm, label ; branch if Rn & (1 << imm) == 0
 tbnz Rn, #imm, label ; branch if Rn & (1 << imm) != 0

The CBZ / CBNZ instructions have a reach of ±1MB,² and the TBZ / TBNZ instructions

have a reach of ±32KB.

You can synthesize a “branch if negative / nonnegative” from TBZ and TBNZ by testing the

sign bit.

 ; For 64-bit values, the sign bit is bit 63.
 tbz Xn, #63, label ; branch if nonnegative
 tbnz Xn, #63, label ; branch if negative

 ; For 32-bit values, the sign bit is bit 31.
 tbz Wn, #31, label ; branch if nonnegative
 tbnz Wn, #31, label ; branch if negative

3/4

The CBZ / CBNZ and TBZ / TBNZ instructions help compensate for the absence of some

flags-setting bitwise operations.

 ; you want to write
 eor x0, x1, x2
 bmi negative
 bne nonzero

 ; alternative
 eor x0, x1, x2
 tbnz x0, #63, negative
 cbnz nonzero

In addition to relative jumps, we have a register indirect jump:

 ; branch to register
 br Xn/zr

The processor allows you to hard-code the zero register here, but that is not particularly

useful unless your goal is to fault on the next cycle. (Better would be to use a permanently

undefined instruction, which we’ll see later. That way the crash points at the offending

instruction instead of at address 0.)

Subroutine calls are performed by branching to the first instruction of the subroutine and

putting the return address in the x30 register.

 ; branch with link (can reach ±128MB)
 bl label ; x30 = return address
 ; execution resumes at label

 ; branch with link to register
 blr Xn/zr ; x30 = return address
 ; execution resumes at Xn

The branch-with-link instructions predict a subroutine call.

And of course your subroutine will probably want to return:

 ; return from subroutine
 ret Xn/zr ; resume execution at Xn
 ret ; resume execution at x30

The RET instruction is functionally equivalent to BR because they both perform a branch

to an address held in a register. The difference is that RET predicts a subroutine return.

Okay, now about trampolines. A trampoline is a fragment of code that jumps to the final

destination. To help generate the jump instruction, the code fragment is permitted to clobber

the x16 and x17 registers, also known as xip0 and xip1. Here’s an example:

4/4

 ; original code was "bl toofar", but toofar is too far away.
 bl toofar_trampoline

...

toofar_trampoline:
 adrp xip0, toofar
 add xip0, xip0, PageOffset(toofar)
 br xip0

Next time, we’ll look at the collection of branchless conditional execution operations.

Bonus chatter: AArch64 drops the table branch instructions which were present in

AArch32. The table branch instructions were used in AArch32 primarily for dense switch

statements. We’ll see later how dense switch statements are handled in AArch64.

¹ There is a mystery 16th condition code, and if you follow the pattern of the existing

condition codes, the missing one should be NV for never, the opposite of AL (always).

However, if you try to use it, you’ll find that it behaves the same as AL . This is

architecturally documented behavior. So you could say that on ARM, never is the same as

always.

² In AArch32, the CBZ and CBNZ instructions were limited to forward branches, but in

AArch64 they can go both forward and backward.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

