
1/6

August 29, 2022

The AArch64 processor (aka arm64), part 24: Code
walkthrough

devblogs.microsoft.com/oldnewthing/20220829-00

Raymond Chen

As is traditional, I wrap up the processor overview series with an annotated walkthrough of a

simple function. Here’s the function again:

extern FILE _iob[];

int fclose(FILE *stream)
{
 int result = EOF;

 if (stream->_flag & _IOSTRG) {
 stream->_flag = 0;
 } else {
 int index = stream - _iob;
 _lock_str(index);
 result = _fclose_lk(stream);
 _unlock_str(index);
 }

 return result;
}

Here we go.

This function takes a single pointer parameter, which is therefore passed in the x0 register.

No parameters are passed on the stack.

; int fclose(FILE *stream)

 stp x19, x20, [sp,#-0x20]!
 str x21, [sp,#0x10]
 stp fp, lr, [sp,#-0x10]!
 mov fp, sp

We start with the function prologue, which creates the stack frame and saves nonvolatile

registers that we will be using inside the function.

https://devblogs.microsoft.com/oldnewthing/20220829-00/?p=107066

2/6

The first instruction reserves 32 bytes of stack and stores x19 and x20 into the first two slots.

The pre-increment addressing mode (signaled by the exclamation point) updates the base

register sp with the effective address, so this both stores the registers to memory as well as

moving the stack pointer.

The second instruction stores the x21 variable into the memory that follows x20. The last 8

bytes are not used; they were allocated in order to preserve 16-byte stack pointer alignment.

The third instruction pushes the frame pointer and link register into the stack. Notice that

this function adjusted the stack pointer twice. I’m not sure how the compiler decides whether

to reserve stack space all at once, or whether to reserve it little by little, like we did here.

After all the registers have been stored, we set fp to the current stack pointer, which makes it

point to where we stored the previous fp, thereby linking a new node onto the chain of stack

frames.

Now that the prologue is out of the way, we can start with the function body.

 mov x20, x0 ; x20 = stream

The compiler takes the stream parameter, which was received in x0, and saves it in the

nonvolatile register x20 so it can be preserved across function calls.

; int result = EOF;
; if (stream->_flag & _IOSTRG) {

 ldr w8, [x20, #0xC] ; w8 = stream->_flag
 mov w21, #-1 ; w21 = EOF
 tbz x8, #6, nostring ; branch if _IOSTRG bit is zero

The work for the next two lines of code are interleaved. The compiler appears to have chosen

to use w21 to hold the result variable, so it initializes it to -1 . The disassembler shows it

as a MOV , but the raw instruction is really a MOVN w21, #0, LSL #0 .

The initialization of the result variable is sandwiched between the test for the _IOSTRG

bit. We load the value of _flag into the w8 register and test bit 6, which is the bit that

corresponds to _IOSTRG , branching if the bit is clear (test bit zero).

; stream->_flag = 0;
; } else {

 str wzr, [x20, #0xC] ; set _flag to zero
 b done ; end of "true" branch

If the branch is not taken, we fall through and store a 32-bit zero to _flag . That’s the end of

the “true” branch.

3/6

; int index = stream - _iob;

nostring:
 adrp x8, sample+0x2000 ; load high bits of pointer
 add x8, x8, #0x0180 ; x8 -> _iob
 sub x9, x20, x8 ; calculate byte offset
 asr x19, x9, #4 ; x19 = convert to element offset

In the “false” branch, we calculate the stream index. First, we load up the address of the

_iob . This takes two instructions, the first to load up the page that holds the _iob

variable, and the second to find the _iob within that page.

Subtract the _iob from the stream to get the byte offset, and convert it to an index by

dividing by the size of a single FILE , which happens to be 16, so dividing can be done by

shifting. The index is kept in x19.

; _lock_str(index);

 mov w0, w19 ; parameter is the index
 bl _lock_str

The index is the sole parameter to _lock_str , so we put it into w0 and call the function.

; result = _fclose_lk(stream);

 mov x0, x20 ; parameter is the stream
 bl _fclose_lk ; call _fclose_lk
 mov w21, w0 ; save the result

Next up is calling _fclose_lk with the stream as the parameter. We save the return value

into w21 which represents the result variable.

; _unlock_str(index);
; }

 mov w0, w19 ; parameter is the index
 bl _unlock_str

Unlocking the string is done by index, which is fortunately still sitting around in the w19

register.

; return result;

done:
 mov w0, w21

The function return value goes into x0, so we move w21 (representing result) into the

lower 32 bits of the x0 register.

4/6

; }
 ldp fp, lr, [sp], #0x10
 ldr x21, [sp, #0x10]
 ldp x19, x20, [sp], #0x20
 ret

And we’re done. Now it’s time to clean up. We pop off the previous frame pointer and return

address, the restore and pop the other nonvolatile registers we had saved. Finally we perform

a ret to jump back to the return address in lr.

When I do these walkthrough, I look to see if there was anything I could do to tighten up the

code. The interesting thing that the compiler failed to recognize is that the lifetimes of

result and stream do not overlap in any meaningful way, so they could share the same

register. This reduces the number of registers by one, which saves 16 bytes of stack since we

no longer need to save x21.

Another trick is to fold the asr into the mov instruction that sets up the index

parameter, saving an instruction.

5/6

; int fclose(FILE *stream)
 stp x19, x20, [sp,#-0x10]! ; NEW! Need only 0x10 bytes
 ; NEW! Don't need to save x21
 stp fp, lr, [sp,#-0x10]!
 mov fp, sp

 mov x20, x0 ; x20 = stream

; int result = EOF;
; if (stream->_flag & _IOSTRG) {

 ldr w8, [x20, #0xC] ; w8 = stream->_flag
 tbz x8, #6, nostring ; branch if _IOSTRG bit is zero

; stream->_flag = 0;
; } else {

 str wzr, [x20, #0xC] ; set _flag to zero
 ; NEW! "stream" is dead, so
 ; w20 now represents "result"
 mov w20, #-1 ; result = EOF
 b done ; end of "true" branch

; int index = stream - _iob;

nostring:
 adrp x8, sample+0x2000 ; load high bits of pointer
 add x8, x8, #0x0180 ; x8 -> _iob
 sub x19, x20, x8 ; calculate byte offset (x19)

; _lock_str(index);

 ; NEW! Convert byte offset to index
 ; on the fly
 asr w0, w19, #4 ; parameter is the index
 bl _lock_str

; result = _fclose_lk(stream);
; _unlock_str(index);
; }

 mov x0, x20 ; parameter is the stream
 bl _fclose_lk ; call _fclose_lk

 ; NEW! "stream" is dead, so
 ; w20 now represents "result"
 mov w20, w0 ; save the result

 ; NEW! Convert byte offset to index
 ; on the fly
 asr w0, w19, #4 ; parameter is the index
 bl _unlock_str

6/6

; return result;

done:
 mov w0, w20

; }
 ldp fp, lr, [sp], #0x10
 ; NEW! Don't need to restore x21
 ldp x19, x20, [sp], #0x10
 ret

This is really just recreational optimization at this point. The extra few instructions in the

compiler-generated code is not going to be noticeable here, seeing as the fclose function is

probably going to do things like close file handles, which are far more expensive than just a

few instructions.

This concludes our quick overview of the ARM processor in 64-bit mode. Now when you have

to look at a crash dump on an ARM64 system, you might have a clue about what you’re

looking at.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

