
1/7

August 31, 2022

The x86-64 processor (aka amd64, x64): Whirlwind tour
devblogs.microsoft.com/oldnewthing/20220831-00

Raymond Chen

I figure I’d tidy up the processor overview series by covering the last¹ processor on my list of

“processors Windows has supported in its history,” namely, the x86-64. Other names for this

architecture are amd64 (because AMD invented it) and x64 (which is super-confusing

because it doesn’t correspond with x86, a common nickname for the x86-32).

This is going to be a quick overview because the x86-64 is a natural extension of the i386,

which we covered some time ago. I’ll just highlight the differences.

Each existing 32-bit general-purpose register has been extended from 32 bits to 64. The

name of the 64-bit register is based on the name of the 32-bit register, but with the leading e

changed to a leading r. Eight new 64-bit registers were introduced, bring the total to 16.

Instead of giving quirky names to the new registers, they are just numbered: r8 through r15.

To match the existing classic registers, the new registers also have aliases for referring to

partial registers, and partial register aliases were invented for some of the classic registers

that lacked them.

Register

Aliases

Preserved? NotesBits 31:0 Bits 15:0 Bits 15:8 Bits 7:0

rax eax ax ah al No Return value

rbx ebx bx bh bl Yes

rcx ecx cx ch cl No Parameter 1

rdx edx dx dh dl No Parameter 2

rsi esi si sil Yes

rdi edi di dil Yes

rsp esp sp spl Yes Stack pointer

https://devblogs.microsoft.com/oldnewthing/20220831-00/?p=107077
https://devblogs.microsoft.com/oldnewthing/20190120-00/?p=100745

2/7

rbp ebp bp bpl Yes Frame pointer

r8 r8d r8w r8b No Parameter 3

r9 r9d r9w r9b No Parameter 4

r10 r10d r10w r10b No

r11 r11d r11w r11b No

r12 r12d r12w r12b Yes

r13 r13d r13w r13b Yes

r14 r14d r14w r14b Yes

r15 r15d r15w r15b Yes

The eip and eflags registers are correspondingly expanded to 64-bit registers rip and rflags.

Additional restrictions have been imposed on the use of the ah, bh, ch, and dh registers. The

details aren’t important for reading code, so I won’t bother digging into them.

Windows requires that the stack be 16-byte aligned at function call boundaries, and there is

no red zone. Calling a function pushes the 8-byte return address onto the stack, so on entry

to a function, the stack is misaligned. Functions typically realign the stack in their prologue.

The old 8087-based floating point registers are not used.² Instead, the SIMD XMM registers

are used for floating point calculations. These registers are 128 bits wide and can be viewed

as four single-precision floating point values or as two double-precision floating point values.

When used to pass parameters or return floating point values, only the bottom lane is used.

Eight more XMM registers have been added, bringing the total to 16.

Register Preserved? Notes

XMM0 No Parameter 1 and return value

XMM1 No Parameter 2 and second return value

XMM2 No Parameter 3

XMM3 No Parameter 4

XMM4 No

XMM5 No

3/7

XMM6 Yes

XMM7 Yes

XMM8 Yes

XMM9 Yes

XMM10 Yes

XMM11 Yes

XMM12 Yes

XMM13 Yes

XMM14 Yes

XMM15 Yes

Calling convention

The calling convention is register-based for the first four parameters, with remaining

parameters on the stack. In practice, the stack-based parameters are not push ‘d, but rather

the values are mov ‘d into the preallocated stack space.

For register-based parameters, integer parameters go into the general-purpose registers and

floating point parameters go into the floating point registers. When a register is used to hold

a parameter, its counterpart register goes unused. For example, a function that takes an

integer and a double will pass the integer in rcx and the double in xmm1.

There are always 4 × 8 = 32 bytes of home space for the register-based parameters, even if

the function has fewer than four formal parameters. (If this bothers you, then you can

reinterpret the home space as a 32-byte red zone that resides above the return address.)

Integer return values up to 64 bits go into rax If the return value is a 128-bit value, then the

rdx register holds the upper 64 bits. Floating point return values are returned in xmm0.

The caller is responsible for cleaning the stack. In practice, the caller does not clean the stack

after every call, but rather preallocates the stack space in the prologue, reuses the stack space

for multiple calls, and then cleans it all up in the epilogue.

Exception handling is done by unwind tables, not by threading exception handlers through

the stack at runtime.

Partial registers

4/7

When a 32-bit partial register is the destination of an operation, the upper 32 bits are set to

zero. For example, consider

 add eax, ecx

On the 32-bit 80386, this adds the value of ecx to eax and puts the result back into eax. On

x86-64, this performs the same calculation, but since the destination is the 32-bit partial

register eax, the operation also zeroes out the upper 32 bits of rax.

Another way of looking at this is that writes to 32-bit partial registers are zero-extended to

64-bit values.³

Note, however, that operations on 16-bit and 8-bit partial registers leave the unused bits

unchanged.

Addressing modes

The 32-bit addressing modes carry over to 64-bit, with these exceptions:

Absolute addressing mode is limited to signed 32-bit addresses.

There is a new rip-relative addressing mode.

The offsets in the memory addressing modes are 32-bit signed values, for a reach of ±2GB.

The rip-relative addressing mode greatly reduces the number of fixups required to relocate a

module. The enormous ±2GB reach means that any reasonably-sized module can use it to

access all of its static data, be it a read-only table embedded in the code segment or read-

write data in the data segment.

The disassembler automatically performs the necessary calculations to convert the rip-

relative address to an absolute one at disassembly time, so you are unlikely even to realize

that anything has changed.

Immediates

In general, immediates are capped at 32 bits. The exception is that you can use a 64-bit

immediate in the mov reg, imm64 instruction.

Segments

Segmentation is architecturally dead. The processor is always in flat mode. The fs and gs

selectors have been repurposed as two additional registers that add an operating-system-

defined value to the effective address.

 mov rax, qword ptr gs:[rcx*8+1480h]

https://devblogs.microsoft.com/oldnewthing/20210917-00/?p=105704

5/7

The base address assigned to the gs register is added to the effective address rcx * 8 +

0x1480, producing a final address that is the target of the memory operation.

Windows sets the gs register’s base address to a block of per-thread data. During context

switches, the base address of the gs register is updated to point to the per-thread data of the

incoming thread. The fs register has not yet been assigned a meaning and should not be

used.⁴ The Windows ABI forbids modifying either of these segment registers.

Instruction set changes

Some rarely-used instructions have been removed, primarily the binary-coded decimal

instructions, BOUND , and PUSHAD / POPAD instructions.

New instructions for dealing with 64-bit registers:

 ; sign-extend 32-bit to 64-bit
 movsxd r64, r32/m32

There is no need for a zero-extend instruction because operations on 32-bit registers

automatically zero-extend to 64-bit values, so if the value was the result of a calculation, you

probably got the zero-extended value anyeway. If you want to wipe out the top 32 bits of an

existing 64-bit value, you could do

 ; zero-extend 32-bit to 64-bit
 mov r32, r32

This can result in some odd-looking instructions like

 mov eax, eax ; zero-extend eax to rax

On its face, the instruction looks pointless, but we’re performing for the zero-extending side

effect.⁵

There are also specialized instruction for certain sign-extending scenarios:

 cwqe ; sign-extend eax to rax
 cqd ; sign-extend rax to rdx:rax

Lightweight leaf functions and exception handling

A lightweight leaf function is one which can perform all of its work using only non-preserved

registers, the inbound parameter home space, and stack space occupied by stack-based

inbound parameters (if any). Preserved registers and the stack pointer must remain

unchanged for the entire lifetime of the function, and the return address must remain at the

top of the stack.

6/7

The inability to move the stack pointer means that the stack pointer is not at a multiple of 16

for the lifetime of a lightweight leaf function.

The x86-64 ABI abandons the stack-based exception handling model of its 32-bit older

brother and joins the RISC crowd by using table-based exception handling. With the

exception of lightweight leaf functions, all functions must declare unwind codes that allow

the exception unwinder to restore registers from the stack and find the return address. Any

function that does not have unwind codes is assumed to be a lightweight leaf function.

Annotated disassembly

I’ll defer to the existing documentation (which I wrote).

Encoding notes

Instructions that operate on the classic 32-bit or 8-bit registers tend to have the most

compact encodings. Using any of the new registers (r8 through r15, or xmm8 through

xmm15, or the new aliases sil, dil, spl or bpl) typically requires a one-byte prefix. An

instruction that operates on word-sized data typically incurs an additional byte encoding.

And fancy addressing modes (involving scaling or multiple registers contributing to the

effective address) also require yet another byte for the encoding.

I’m not sure how aggressively the compiler allocates registers and chooses instructions which

have compact encodings. It certainly didn’t stand out to me.

Bonus reading: x64 software conventions.

Bonus chatter: Now that I’ve exhausted my list of processors that Windows has supported

over the years, I’ll have to start branching out into other processors. I’m open to suggestions.

Though I probably won’t be as detailed as these processor overviews have been, since the

original goal of these overviews was to give you enough information to get started debugging

on Windows. For other processors, I’ll probably just focus on the one or two things that make

them interesting, like SPARC register windows, or 68000’s separate data and address

registers.

¹ Early versions of Windows CE allegedly supported the StrongARM and possibly even M32R

and other architectures, but I can’t find any binaries for those versions, so I have nothing to

investigate.

² They are still physically present and usable, but in practice, nobody uses them,⁶ and they

are not part of the calling convention.

³ I strongly suspect this design decision was made to avoid introduce spurious register

dependencies due to partial register operations.

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/annotated-x64-disassembly
https://docs.microsoft.com/en-us/cpp/build/x64-software-conventions?view=msvc-160

7/7

⁴ On x86-32, the fs register is used to access the per-thread data. Why did Windows switch to

using gs on x86-64? One theory is that there is a special instruction on x86-64 called

SWAPGS that lets the kernel exchange the gs base address with another internal register.

This instruction is used on transitions to and from user mode, so the kernel can quickly

switch from user-mode thread data to kernel-mode thread data on entry and to switch it back

on exit. No such courtesy instruction exists for the fs register. Another theory is that fs is

reserved for the 32-bit emulation layer.

⁵ It also means that the x86-32 pun of interpreting nop as xchg eax, eax does not work

in x86-64. The self-exchange zeroes out the high 32 bits as a side effect. The Windows

debugger doesn’t realize this, and if you ask it to assemble xchg eax, eax , it encodes it as

90 , using the one-byte encoding of xchg eax, r32 , unaware that this doesn’t work if the

other register is also eax. The correct encoding of xchg eax, eax is 87 c0 , using the

larger two-byte encoding.

⁶ Apparently, gcc and clang do use them for the 80-bit floating point long double type.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

