
1/4

September 9, 2022

The case of the APC that never arrives
devblogs.microsoft.com/oldnewthing/20220909-00

Raymond Chen

A customer encountered found that sometimes, their application hung in its clean up code.

Here’s a simplified version.

bool ShuttingDown = false;

void MainThread()
{
 DWORD id;
 auto hThread = CreateThread(nullptr, 0, WorkerThread,
 nullptr, 0, &id); // succeeds

 BlahBlahBlah(); // do useful work

 // Time to clean up. Post an APC to the worker thread
 // to tell it that it's time to go home.
 QueueUserAPC(WakeWorker, hThread, 0); // succeeds

 WaitForSingleObject(hThread, INFINITE); // hangs

 CloseHandle(hThread);
}

void CALLBACK WakeWorker(ULONG_PTR)
{
 ShuttingDown = true;
}

DWORD CALLBACK WorkerThread(void*)
{
 // Do work until shut down.
 do
 {
 // All work is posted via APCs.
 SleepEx(INFINITE, TRUE);
 } while (!ShuttingDown);

 return 0;
}

https://devblogs.microsoft.com/oldnewthing/20220909-00/?p=107151

2/4

The idea is that the program has a worker thread to, y’know, do some work. All of the work

items are posted via Queue User APC , and the worker thread simply calls Sleep Ex

alertably, over and over again. Each call to Sleep Ex sleeps the thread until an APC is

queued, at which point it returns (because the bAlertable parameter is TRUE).

One way of looking at this design is that it’s a sneaky way of making the operating system

manage your work queue for you. Another way of looking at it is as a single-threaded I/O

completion port.

Call it what you will.

Anyway, the problem is that the worker thread is stuck in SleepEx , as if it never got the

Wake Worker APC that tells it to exit.

But is that really the problem?

The customer was able to get some full memory dumps of systems that got into this state, and

the telling detail is that the ShuttingDown variable was set to true . So it wasn’t that the

Wake Worker APC never arrived. It totally did arrive and set ShuttingDown to true . Yet

somehow that didn’t wake up the SleepEx .

One of my colleagues offered the possibility that when the code entered the Sleep Ex loop,

the Wake Worker APC had already run. If that’s the case, then the Sleep Ex is going to wait

for an APC that has already arrived.

I was able to confirm with a test program that this was indeed a possibility.

3/4

DWORD apc = 0;

void CALLBACK WakeWorker(ULONG_PTR)
{
 apc = GetCurrentThreadId();
}

DWORD CALLBACK WorkerThread(void*)
{
 if (apc == GetCurrentThreadId()) DebugBreak();
 return 0;
}

int __cdecl main()
{
 DWORD id;
 while (true)
 {
 apc = 0;
 auto h = CreateThread(nullptr, 0, WorkerThread, nullptr, 0, &id);
 QueueUserAPC(WakeWorker, h, 0);
 WaitForSingleObject(h, INFINITE);
 CloseHandle(h);
 Sleep(10);
 }
 // notreached
}

This program creates a thread and immediately queues an APC to it. The thread procedure

checks if the APC already ran on the same thread, and if so, it breaks into the debugger.

If you run this program, it breaks immediately. If you set a breakpoint on the Wake Worker

function, you’ll see that it does indeed run on the thread before the Worker Thread function

starts.

From the stack trace on that breakpoint, it appears that the kernel processes APCs during the

early phases of thread creation, so if you had any queued APCs, they will get processed before

the thread procedure even starts.

So that’s the bug: The ShuttingDown flag was already set by the time the thread procedure

started, but the code assumes that it can only be set by an APC that is processed by the

Sleep Ex .

The fix is simple: Change the loop from a do...while to a while , so that the test is at the

top of the loop instead of at the bottom.

4/4

DWORD CALLBACK WorkerThread(void*)
{
 // Do work until shut down.
 while (!ShuttingDown)
 {
 // All work is posted via APCs.
 SleepEx(INFINITE, TRUE);
 }

 return 0;
}

The case where this happens is if the Blah Blah Blah() function returns very quickly,

allowing the QueueUserAPC to win the race against the Worker Thread .

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

