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Armed with some insight into C++ coroutines and lazy-start coroutines, we return to the

issue of making asynchronous operations run one after the other instead of concurrently.

Adapting the solution from C# comes with a frustrating complication: Unlike C# Task s,

C++/WinRT IAsyncAction  and IAsyncOperation  support only one completion callback,

so we cannot co_await  them more than once. That’s too bad, because the C# version relied

on having two awaiters: One is the ultimate caller of the asynchronous method, and the other

is the internal awaiter that we use for sequencing.

Since the caller is going to perform a co_await , our internal awaiter will have to use some

other mechanism for sequencing. We’ll do that by hooking up the continuations manually

into our own data structures.

https://devblogs.microsoft.com/oldnewthing/20220915-00/?p=107182
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struct task_sequencer 
{ 
   task_sequencer() = default; 
   task_sequencer(const task_sequencer&) = delete; 
   void operator=(const task_sequencer&) = delete; 

private: 
   using coro_handle = std::experimental::coroutine_handle<>; 

   struct suspender 
   { 
       bool await_ready() const noexcept { return false; } 
       void await_suspend(coro_handle h) 
           noexcept { handle = h; } 
       void await_resume() const noexcept { } 

       coro_handle handle; 
   }; 

   static void* completed() 
   { return reinterpret_cast<void*>(1); } 

   struct chained_task 
   { 
       chained_task(void* state = nullptr) : next(state) {} 

       void continue_with(coro_handle h) { 
           if (next.exchange(h.address(), 
                       std::memory_order_acquire) != nullptr) { 
               h(); 
           } 
       } 

       void complete() { 
           auto resume = next.exchange(completed()); 
           if (resume) { 
               coro_handle::from_address(resume).resume(); 
           } 
       } 

       std::atomic<void*> next; 
   }; 

   struct completer 
   { 
       ~completer() 
       { 
           chain->complete(); 
       } 
       std::shared_ptr<chained_task> chain; 
   }; 
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   winrt::slim_mutex m_mutex; 
   std::shared_ptr<chained_task> m_latest = 
       std::make_shared<chained_task>(completed()); 

public: 
   template<typename Maker> 
   auto QueueTaskAsync(Maker&& maker) ->decltype(maker()) 
   { 
       auto current = std::make_shared<chained_task>(); 
       auto previous = [&] 
       { 
           winrt::slim_lock_guard guard(m_mutex); 
           return std::exchange(m_latest, current); 
       }(); 

       suspender suspend; 

       using Async = decltype(maker()); 
       auto task = [](auto&& current, auto&& makerParam, 
                      auto&& contextParam, auto& suspend) 
                   -> Async 
       { 
           completer completer{ std::move(current) }; 
           auto maker = std::move(makerParam); 
           auto context = std::move(contextParam); 

           co_await suspend; 
           co_await context; 
           co_return co_await maker(); 
       }(current, std::forward<Maker>(maker), 
         winrt::apartment_context(), suspend); 

       previous->continue_with(suspend.handle); 

       return task; 
   } 
};

There’s a lot going on here, so let’s take it bit by bit.

struct task_sequencer 
{ 
   task_sequencer() = default; 
   task_sequencer(const task_sequencer&) = delete; 
   void operator=(const task_sequencer&) = delete; 

Our task_sequencer  is default-constructible but is not copyable or assignable.

Inside the class, we start with the suspender , which we saw last time. We use this to force

the lambda coroutine (coming later) to suspend and capture the coroutine handle that lets us

resume it.
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Next, we have the chained_task . This class connects the coroutines that want to run in

sequence.

 coroutine  chained_task

→ current → next

  ↙ 

 coroutine  chained_task

 current → next → nullptr

   ↑
 m_latest

Each coroutine has a local variable called current  which is a shared pointer to a

chained_task . That chained_task  has a member called next  which points to the

coroutine to run after the current coroutine has completed. The chain ends with a

chained_task  (also known as m_latest ) whose next  is null.

Each chained_task  remembers the coroutine that needs to run next in its next  member.

The most recently-queued one is remembered in m_latest , and its next  is nullptr  if

the coroutine is still running, or is completed  if the coroutine has completed (and is

waiting for somebody to run next).

We set our initial condition by initializing m_latest  to a chained_task  that has already

completed. That way, the next coroutine to be queued will run immediately.

First, we create a new chained_task  node and make it the m_latest , while saving the

previous value of m_latest  in previous .

   auto current = std::make_shared<chained_task>(); 
   auto previous = [&] { 
       winrt::slim_lock_guard guard(m_mutex); 
       return std::exchange(m_latest, current); 
   }(); 

In pictures, we’ve created this:

 coroutine  chained_task

→ current → next

  ↙ 
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 coroutine  chained_task

 current → next → nullptr

   

   chained_task

   next → nullptr

   ↑
 m_latest

Once we’ve set up the new node, we capture it into a coroutine which represents the queued

task, and then use the suspender  in order to suspend the coroutine immediately and

obtain its coroutine handle.

   suspender suspend; 

   using Async = decltype(maker()); 
   auto task = [](auto&& current, ..., auto& suspend) 
               -> Async 
   { 
       chained_task_completer completer{ std::move(current) }; 
       ... 

       co_await suspend; 
       ... 
   }(current, ..., suspend); 

This fills in another par of the diagram:

 coroutine  chained_task

→ current → next

  ↙ 

 coroutine  chained_task

 current → next → nullptr

   

 coroutine  chained_task

 current → next → nullptr

   ↑
 m_latest
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And then we take that coroutine handle and hook it up to the previous chained_task :

   previous->continue_with(suspend.handle); 

That last step links everything together again:

The linked list now looks like this:

 coroutine  chained_task

→ current → next

  ↙ 

 coroutine  chained_task

 current → next

  ↙ 

 coroutine  chained_task

 current → next → nullptr

   ↑
 m_latest

As a special case, if the previously-final chained_task  has already completed, then instead

of hooking up the arrow from that chained_task  to the latest coroutine, we just resume the

latest coroutine immediately.

That’s how nodes get added to the list. But how are they removed?

The nodes disappear from the front of the list when coroutines complete. When a coroutine

completes, its completer  destructs, which destructs the shared pointer to the chained_

task . If the chained_task  is not the m_latest , then this destroys the last shared

pointer to the chained_task , so it too destructs. As coroutines complete, the head of the

linked list gets gobbled up until only m_latest  remains.

Now let’s look inside the coroutine we created.
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   using Async = decltype(maker()); 
   auto task = [](auto&& current, auto&& makerParam, 
                  auto&& contextParam, auto& suspend) 
               -> Async 
   { 
       completer completer{ std::move(current) }; 
       auto maker = std::move(makerParam); 
       auto context = std::move(contextParam); 

       co_await suspend; 
       co_await context; 
       co_return co_await maker(); 
   }(current, std::forward<Maker>(maker), 
     winrt::apartment_context(), suspend); 

Again, there are a few things going on here.

This is a captureless lambda because coroutine lambdas with captures are scary. The

captures are instead passed as explicit parameters so they go into the coroutine frame.

The first thing we do is move the objects out of the parameters into locals, so that they

destruct as soon as the coroutine completes. We saw some time ago that coroutine

parameters do not destruct until the coroutine is destroyed, but we want to resume the next

coroutine in the chain as soon as the previous one completes.

We create the completer  as the first local variable so that it destructs last. That way, we

resume the next coroutine only after the current one has destructed everything it had

captured. We use an object with a destructor to ensure that chaining to the next coroutine

occurs even if the current coroutine exits with an exception.

The maker  is moved into a local variable so that it (and all of its own captures) destructs as

soon as the coroutine completes, rather than lingering until the coroutine is destroyed.

We also move the apartment_context  into a local variable so that we can switch back to

that context once we are resumed. The previous coroutine may have completed on a different

COM context, and we need to start the next one in the original context.

When the coroutine completes (either normally or via an exception), the completer

destructor resume the next coroutine in the chain, if one exists. If not, it just marks itself as

complete so that when the next coroutine shows up, it knows it should run immediately.

The atomic operation for publishing the coroutine handle to next  uses release semantics so

that all of the coroutine state generated by the current thread are made visible before we

publish the coroutine handle. Conversely, the exchange operation that obtains the coroutine

handle uses acquire semantics to ensure that the processor uses the published values instead

of locally-cached ones.
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Note that if your object is single-threaded, and tasks can be queued only from a single thread,

then you don’t need the m_mutex , which also simplifies the updating of m_latest :

   auto current = std::make_shared<chained_task>(); 
   auto previous = std::exchange(m_latest, current); 

But wait, we’re not done yet. There are some exceptional conditions we’ll look at next time.
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