
1/4

September 19, 2022

Why load fs:[0x18] into a register and then dereference
that, instead of just going for fs:[n] directly?

devblogs.microsoft.com/oldnewthing/20220919-00

Raymond Chen

For the purpose of this discussion, I’m going to assume you are familiar with the x86 32-bit

and 64-bit instruction set architectures.

In Windows on x86, a pointer to per-thread information is kept in the fs register (for x86-

32) or the gs register (for x86-64). If you disassemble through the kernel, you’ll see that

accesses to the per-thread information usually goes through two steps:

 mov eax, dword ptr fs:[0x00000018]
 mov eax, dword ptr [eax+n]

Why do it this way when you could combine it into one?

 mov eax, dword ptr fs:[n]

Access to the per-thread data is abstracted into the helper function NtCurrentTeb, and the

definition of that function changes based on the processor architecture.

// x86-32
return (struct _TEB *) (ULONG_PTR) __readfsdword (0x18);

// x86-64
return (struct _TEB *)__readgsqword(FIELD_OFFSET(NT_TIB, Self));

One option for optimizing access to per-thread data is to create a custom accessor for each

thing you need.

inline DWORD GetLastErrorFromTEB()
{
#if defined(_M_IX86)
 return __readfsdword(FIELD_OFFSET(TEB, LastErrorCode));
#elif defined(_M_AMD64)
 return __readgsdword(FIELD_OFFSET(TEB, LastErrorCode));
#else
 ... other architectures here ...
#endif
}

https://devblogs.microsoft.com/oldnewthing/20220919-00/?p=107195
https://docs.microsoft.com/en-us/windows/win32/api/winnt/nf-winnt-ntcurrentteb

2/4

This gets rather unwieldy as the number of fields in the TEB increases, since each one needs

its own custom accessor. So maybe you abstract it into a macro.

#if defined(_M_IX86)
#define GetDwordFieldFromTEB(Field) \
 __readfsdword(FIELD_OFFSET(TEB, Field))
#define GetPointerFieldFromTEB(Field) \
 __readfsdword(FIELD_OFFSET(TEB, Field))
#elif defined(_M_AMD64)
#define GetDwordFieldFromTEB(Field) \
 __readgsdword(FIELD_OFFSET(TEB, Field))
#define GetPointerFieldFromTEB(Field) \
 __readgsqword(FIELD_OFFSET(TEB, Field))
#else
 ... other architectures here ...
#endif

DWORD GetLastError()
{
 return GetDwordFieldFromTEB(LastErrorCode);
}

PEB GetProcessEnvironmentBlock()
{
 return (PEB)GetPointerFieldFromTEB(Peb);
}

Another option is to teach the compiler’s peephole optimizer that, if compiling in Windows

ABI mode, it can fold the instruction sequence, provided the first fs access is to exactly the

value 0x18 . This would be a very special compiler optimization that would kick in only for a

limited audience. While it’s true that the compiler team has been known to produce custom

versions of the compiler for one-off situations, the savings for this particular micro-

optimization would be, if you’re lucky, a few thousands of instructions. That’s a lot of work to

save a few dozen kilobytes.

Furthermore, switching over could end up being worse: The offset field of an absolute

selector-relative load is a 32-bit field, whereas the offset when applied to a general-purpose

register can be made as small as eight bits. There is typically a penalty for accessing memory

through a segment register whose base is not zero.¹ Furthermore, you have to pay for the

prefix byte, and are probably taking the processor down an execution path that is not heavily

optimized. If you are going to access per-thread data more than once in a function, you may

very well have been better off just caching the result in a general-purpose register so you

could use the smaller (and probably more efficient) flat addressing mode instead.

Even if all the calculations show that accessing the per-thread data from scratch is better

than caching it in a general-purpose register (say, because the x86-32 is so register-starved

that freeing up even one register is a big deal), you have to redo the cost/benefit calculations

https://docs.microsoft.com/en-us/previous-versions/technet-magazine/cc742531(v=msdn.10)

3/4

for the other architectures.

// arm
return (struct _TEB *)(ULONG_PTR)_MoveFromCoprocessor(CP15_TPIDRURW);

// arm64
return (struct _TEB *)__getReg(18); // register x18

// alpha
return (struct _TEB *)_rdteb(); // PAL instruction

// ia64
return (struct _TEB *)_rdtebex(); // register r13

// MIPS
return (struct _TEB *)((PCR *)0x7ffff000)->Teb;

// PowerPC
return (struct _TEB *)__gregister_get(13); // register r13

These architectures break down into two categories: Those for which the offset from the TEB

register can be folded into the instruction, and those for which it cannot.

Architecture Can fold? Notes

x86-32 Yes mov eax, fs:[n]

x86-64 Yes mov rax, gs:[n]

arm No Cannot use offset load from coprocessor register

arm64 Yes ldr x0, [x18, #n]

alpha No Address returned by dedicated instruction

ia64 Yes Can calculate effective address directly from r13

MIPS No No absolute addressing mode

PowerPC Yes lwz r0, n(r13)

For the architectures that don’t support folding, there’s no benefit to the optimization. And

fetching the address from scratch is a pessimization on Alpha, since the call to get the

address of per-thread data is a system call.

In order to benefit from this optimization on processors where it’s helpful, without hurting

the ones where it’s harmful, you may end up having to write two versions of every function:

One which gets the per-thread pointer from scratch every time, and one which caches it. The

4/4

compiler cannot do this transformation for you because it doesn’t know whether the per-

thread data can safely be cached: If there is a fiber switch, then the per-thread data cannot be

cached since the fiber might be resuming on a different thread!

Given that this optimization may not actually be beneficial, and even if it is, the benefit is

slight, and even that slight benefit comes at a cost to other architectures, you’re probably

better off not bothering with this micro-optimization and just writing portable code.

¹ Intel 64 and IA-32 Architectures Optimization Reference Manual, April 2012.

Chapter 2.1 Intel Microarchitecture Code Name Sandy Bridge, Section 2.1.5.2 L1

DCache: “If segment base is not zero, load latency increases.”

Chapter 13 Intel Atom Microarchitecture and Software Optimization, Section 13.3.3.3

Segment Base: “Non-zero segment base will cause load and store operations to

experience a delay.”

Fog, Agner. The microarchitecture of Intel, AMD, and VIA CPUs, August 17, 2021.

Chapter 19 AMD K8 and K10 pipeline: “The time it takes to calculate an address and

read from that address in the level-1 cache is 3 clock cycles if the segment base is zero

and 4 clock cycles if the segment base is nonzero, according to my measurements.”

Raymond Chen

Follow

https://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
https://agner.org/optimize/microarchitecture.pdf
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

