
1/6

October 14, 2022

The case of the memory corruption from a coroutine that
already finished

devblogs.microsoft.com/oldnewthing/20221014-00

Raymond Chen

A customer was getting sporadic crashes in the following code fragment:

https://devblogs.microsoft.com/oldnewthing/20221014-00/?p=107287

2/6

class Widget : WidgetT<Widget>
{
public:
 winrt::IAsyncOperation<bool> InitializeAsync();

private:
 winrt::IAsyncAction GetHighScoreAsync();
 winrt::IAsyncAction GetNameAsync();
 winrt::IAsyncAction GetPictureAsync();

 winrt::hstring m_name{ L"(anonymous)" };
 winrt::SoftwareBitmap m_picture{ DefaultPicture() };
 std::optional<int32_t> m_highScore;
}

winrt::IAsyncAction Widget::GetHighScoreAsync()
{
 auto lifetime = get_strong();
 co_await winrt::resume_background();

 m_highScore = co_await GetHighScoreFromServer();
}

winrt::IAsyncAction Widget::GetNameAsync()
{
 auto lifetime = get_strong();
 co_await winrt::resume_background();

 m_name = co_await GetNameFromIdentityService();
}

winrt::IAsyncAction Widget::GetPictureAsync()
{
 auto lifetime = get_strong();
 co_await winrt::resume_background();

 m_picture = co_await DecodePictureFromSettings();
}

winrt::IAsyncOperation<bool>
 Widget::InitializeAsync()
{
 auto lifetime = get_strong();

 try {
 // Get information in parallel. Faster!
 co_await winrt::when_all(
 GetHighScoreAsync(),
 GetNameAsync(),
 GetPictureAsyncAsync());
 } catch (...) {
 // Service is unavailable or something

3/6

 // else went wrong. Just proceed with whatever
 // worked.
 }

 ShowHighScore(m_highScore);
 BuildGreeting(m_name);
 CropPicture(m_picture);
}

The idea here is that they have an Initialize Async coroutine function that wants to run a

bunch of other coroutines to initialize stuff, and let those other coroutines run in parallel,

since each one is doing something different. When all of the helper coroutines are done, we

process the results. And if any of the helper coroutines fails, that’s okay. We just proceed with

what we were able to get.

The crashes, though, indicated that Build Greeting or Crop Picture were crashing on

their accesses to m_name and m_picture .

Let’s take a survey of how various programming languages allow you to wait for multiple

asynchronous actions:

Language Method Result If any fail

C++ Concurrency::when_all vector<T> fail immediately

C++ winrt::when_all void fail immediately

C# Task.WhenAll T[] wait for others

JavaScript Promise.all Array fail immediately

JavaScript Promise.allSettled Array wait for others

Python asyncio.gather List fail immediately by default

Rust join! tuple wait for others

Rust try_join! tuple fail immediately

Python’s asynchio.gather lets you choose whether a failed coroutine causes gather to

fail immediately or to wait for others before failing. The default is to fail immediately.

This customer is using winrt::when_all , which (consults table) fails as soon as any

coroutine fails. (Our custom when_all has the same behavior.)

https://devblogs.microsoft.com/oldnewthing/20200902-00/?p=104155

4/6

What happened is that one of the coroutines, let’s say Get High Score Async failed with an

exception. That caused winrt::when_all to propagate the exception and abandon waiting

on the other coroutines. The Initialize Async method ignores the exception and then

proceeds on the false assumption that all of the methods ran to complete (possibly with

failure). When it tries to use the m_name , it races against the still-running Get Name Async

method, causing the L"(anonymous)" string to be destructed at the same time it is being

copied, which does not end well. A similar race occurs when Crop Picture reads the

m_picture while Get Picture Async is writing to it.

The simple solution here is to catch the exceptions in the coroutines so that they never

produce a failure. That way, winrt::when_all never completes early.

5/6

winrt::IAsyncAction Widget::GetHighScoreAsync() try
{
 auto lifetime = get_strong();
 co_await winrt::resume_background();

 m_highScore = co_await GetHighScoreFromServer();
} catch (...)
{
}

winrt::IAsyncAction Widget::GetNameAsync() try
{
 auto lifetime = get_strong();
 co_await winrt::resume_background();

 m_name = co_await GetNameFromIdentityService();
} catch (...)
{
}

winrt::IAsyncAction Widget::GetPictureAsync() try
{
 auto lifetime = get_strong();
 co_await winrt::resume_background();

 m_picture = co_await DecodePictureFromSettings();
} catch (...)
{
}

winrt::IAsyncOperation<bool>
 Widget::InitializeAsync()
{
 auto lifetime = get_strong();

 // try {
 // Get information in parallel. Faster!
 co_await winrt::when_all(
 GetHighScoreAsync(),
 GetNameAsync(),
 GetPictureAsyncAsync());
 // } catch (...) {
 // // Service is unavailable or something
 // // else went wrong. Just proceed with whatever
 // // worked.
 // }

 ShowHighScore(m_highScore);
 BuildGreeting(m_name);
 CropPicture(m_picture);
}

6/6

This code happens to use WIL, so there’s a helper macro for catching exceptions and logging

them.

winrt::IAsyncAction Widget::GetHighScoreAsync() try
{
 auto lifetime = get_strong();
 co_await winrt::resume_background();

 m_highScore = co_await GetHighScoreFromServer();
} CATCH_LOG()

winrt::IAsyncAction Widget::GetNameAsync() try
{
 auto lifetime = get_strong();
 co_await winrt::resume_background();

 m_name = co_await GetNameFromIdentityService();
} CATCH_LOG()

winrt::IAsyncAction Widget::GetPictureAsync() try
{
 auto lifetime = get_strong();
 co_await winrt::resume_background();

 m_picture = co_await DecodePictureFromSettings();
} CATCH_LOG()

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

