
1/2

October 17, 2022

How can I check the integrity level of my process?
devblogs.microsoft.com/oldnewthing/20221017-00

Raymond Chen

Integrity levels capture the sense of “running as a regular Win32 process”, “running

elevated”, “running in a sandbox process”, that sort of thing. They describe what degree of

security enforcement is applied to the process and how protected the process is from other

processes.

You can inspect a process’s integrity level by calling Get Token Information and asking for

Token Integrity Level . For this trick, I’m going to use the magic Get Current Process ‐

Token() function to save me the trouble of hunting down the process token (and then

closing it when done). And I’ll use the wil::get_token_information helper function

from the Windows Implementation Library to do the grunt work of calling Get Token ‐

Information twice, once to get the buffer size, and again to fill it.

#include <wil/token_helpers.h>

DWORD GetCurrentProcessIntegrityLevel()
{
 auto info = wil::get_token_information<TokenIntegrityLevel>(
 GetCurrentProcessToken());
 auto sid = info->Label.Sid;
 return *GetSidSubAuthority(sid,
 *GetSidSubAuthorityCount(sid)-1);
}

To get the integrity level, we obtain the Token Integrity Level information, which takes

the form of a TOKEN_MANDATORY_LABEL . That structure consists of a Label , and in the

Label is a Sid . That’s where the integrity level is.

The integrity level is encoded in the SID as the relative identifier (the final subauthority). So

we ask how many subauthorities there are and ask for the last one.

All that’s left is mapping that integer to a semantic range.

https://devblogs.microsoft.com/oldnewthing/20221017-00/?p=107291
https://github.com/microsoft/wil/

2/2

auto integrityLevel = GetCurrentProcessIntegrityLevel();
if (integrityLevel >= SECURITY_MANDATORY_SYSTEM_RID) {
 print("System integrity");
} else if (integrityLevel >= SECURITY_MANDATORY_HIGH_RID) {
 print("High integrity");
} else if (integrityLevel >= SECURITY_MANDATORY_MEDIUM_RID) {
 print("Medium integrity");
} else if (integrityLevel >= SECURITY_MANDATORY_LOW_RID) {
 print("Low integrity");
} else {
 print("Below low integrity?");
}

Alternatively, we can check from low to high, but the tests look weird because we’re testing

the upper boundary of the range, which is named after the next range.

auto integrityLevel = GetCurrentProcessIntegrityLevel();
if (integrityLevel < SECURITY_MANDATORY_LOW_RID) {
 print("Below low integrity?");
} else if (integrityLevel < SECURITY_MANDATORY_MEDIUM_RID) {
 print("Low integrity");
} else if (integrityLevel < SECURITY_MANDATORY_HIGH_RID) {
 print("Medium integrity");
} else if (integrityLevel < SECURITY_MANDATORY_SYSTEM_RID) {
 print("High integrity");
} else {
 print("System integrity");
}

Note the importance of using range checks rather than direct equality checks. That way, you

will successfully handle new integrity levels that are created inside an existing range, such as

SECURITY_MANDATORY_MEDIUM_PLUS_RID , which is an integrity level inserted into the

“Medium” range, above the regular SECURITY_MANDATORY_MEDIUM_RID . There’s also an

unnamed integrity level that is SECURITY_MANDATORY_MEDIUM_RID + 0x10 which is

assigned to medium integrity applications with UIAccess rights.

The sample code in the archived content almost gets it right, but it forgets to handle the case

of an integrity level less than SECURITY_MANDATORY_LOW_RID .

Raymond Chen

Follow

https://docs.microsoft.com/en-us/previous-versions/dotnet/articles/bb625963(v=msdn.10)#uiaccess-for-ui-automation-applications%20%20TITLE=
https://docs.microsoft.com/en-us/previous-versions/dotnet/articles/bb625966(v=msdn.10)
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

