
1/3

October 27, 2022

Why am I seeing two WRITE requests at the same offset
from a single call to WriteFile?

devblogs.microsoft.com/oldnewthing/20221027-00

Raymond Chen

A customer was doing a little performance analysis and found an oddity: A single non-

extending write request at the application layer was turning into two write requests at the

I/O layer, both at the same offset:

Op File Offset Length Flags Priority Status

IRP_MJ_WRITE test.txt 69,632 61,440 Non-cached, Write
Through

Normal SUCCESS

IRP_MJ_WRITE test.txt 69,632 61,440 Non-cached, Write
Through

 Paging,
Synchronous
Paging

Normal SUCCESS

Friend-of-the-blog Malcolm Smith observed that the first write is non-cached. One

possibility is that the first write is a flush of previously-dirty data due to a cached write or a

writable memory-mapped view. The system then follows up with the second write, which is

triggered by the application-level write.

However, if nobody else is writing to the file at the time the test is being run, then that

scenario is ruled out.

Another possibility is that the file is compressed. In that case, the application-level write goes

into the system cache, and then is flushed. This looks like two write operations from the file

system’s point of view, which is what the log is watching. But really, only one write is issued

to the physical drive.

The customer confirmed that they are writing to a compressed file.

Malcolm explained that NTFS compression is rather expensive.

https://devblogs.microsoft.com/oldnewthing/20221027-00/?p=107327


2/3

The idea behind NTFS compression is that the file is broken up into 64KB chunks, with each

chunk compressed separately,¹ and each chunk is managed independently.

This means that a simple write operation that isn’t a full chunk explodes into a sequence of

operations:

Read the enclosing chunk

Decompress the enclosing chunk

Update the uncompressed chunk to incorporate the newly-written data

Compress the modified chunk

Find space on the disk for the modified chunk

Write the modified chunk to disk

Release the space that the old chunk occupied

One consequence of this is that compressed files are pathologically fragmented. The location

of each chunk is unlikely to be correlated with the location of any other chunk in the file,

especially after a bunch of updating write operations have occurred. Every compressed chunk

winds up stored in a random location on the disk.

Furthermore, all this activity entails a lot of updates to the NTFS metadata, which is not just

additional work, but it creates additional synchronization bottlenecks. In particular, a write

to a compressed file cannot overlap with another write or read to that file, since the write has

the metadata lock. For a non-compressed file, non-extending writes can coexist with reads

and other non-extending writes, since none of these operations update file location metadata.

They’re just writing to the sectors that hold the data.

NTFS compression can be used to reduce disk space requirements, but it is not well-suited to

data that is constantly being modified. And if you’re studying performance issues,

compressed files are going to show up as a bottleneck.

The customer thanked Malcolm for his assistance, and noted that they were doing their

performance analysis on their development system, not a production system, and that

explains the unexpected presence of file compression.

Bonus reading: The Alpha AXP, epilogue: A correction about file system compression on

the Alpha AXP.

¹ Or at least, you hope that the chunk can be compressed. If you’re unlucky, the chunks won’t

compress, and you went to all this extra effort and got nothing for it.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20170831-00/?p=96915
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing


3/3

 

 


