
1/2

November 9, 2022

Why don’t Windows functions begin with a pointless
MOV EDI,EDI instruction on x86-64?

devblogs.microsoft.com/oldnewthing/20221109-00

Raymond Chen

Some time ago, we investigated why Windows functions all begin with a pointless MOV

EDI,EDI instruction. The answer was that the instruction was used as a two-byte NOP which

could be hot-patched to a jump instruction, thereby allowing certain types of security fixes to

be applied to a running system. (Those which alter data structures or involve cross-process

communication would not benefit from this.)

But you may have noticed that on 64-bit Windows, these pointless instructions are gone. Is

hot-patching dead?

No, hot-patching is still alive. But on 64-bit Windows, the hot-patch point is implemented

differently.

The idea is that we don’t have to insert a pointless two-byte nop instruction into every

function. If the first instruction of the function is already a two-byte instruction (or bigger),

then that instruction can itself serve as the hot-patch point.

The case where the first instruction of a function is two bytes or larger is by far the dominant

one. There are only a few one-byte instructions remaining in x86-64. The ones you’re likely

to encounter in user-mode compiler-generated code are

push r leave cwde int 3

pop r ret cdq nop

where r is the 64-bit version of one of the eight named (not numbered) registers.

Some of these instructions are not going to appear naturally at the start of a function.

leave doesn’t make sense because it mutates a callee-preserved register.

cwde and cdq don’t make sense because they use rax as an input register, but that

register is undefined on entry to a function.

https://devblogs.microsoft.com/oldnewthing/20221109-00/?p=107373
https://devblogs.microsoft.com/oldnewthing/20110921-00/?p=9583

2/2

nop can just be omitted.

Starting with a pop is disallowed by the Win32 ABI. The return address must stay on

the stack.

And then some of the instructions can be worked around if they happen to be the start of a

function.

push : If the function pushes any registers r8 or higher, those can be pushed first,

since the push of a high-numbered register is a two-byte instruction. Or the instruction

could be re-encoded with a redundant REX prefix 0x48 . Alternatively, the compiler

could save the register in the home space, which uses a multi-byte mov [rsp+n], r

instruction.

ret : This happens if the function is empty and returns no value. The compiler can

change this to a 3-byte ret 0 or a 2-byte repz ret.

The last remaining instruction is int 3 , which is generated by the __debugbreak

intrinsic.

One option is to use the alternate two-byte encoding cd 03 (int nn , with nn = 3).

However, the code with the __debugbreak may be relying on it being a one-byte

instruction, because it intends to patch it with a one-byte nop , or it intends to handle the

breakpoint exception by stepping over the opcode by incrementing the instruction pointer.

Instead, the compiler plays it safe and begins the function with a two-byte nop , which is

encoded as if it were xchg ax, ax , and in fact the Microsoft debugger disassembles it as

such.

The pointless mov edi, edi instruction is gone. And most of the time, the compiler can

juggle things so that you don’t even notice that it arranged for the first instruction of a

function to be a multi-byte instruction. The only time it fails is if the first thing your function

does is __debugbreak , in which case the compiler inserts a pointless xchg ax, ax

instruction, also known as the two-byte nop .

Raymond Chen

Follow

https://repzret.org/p/repzret/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

