
1/5

December 15, 2022

Inside C++/WinRT: IReference
devblogs.microsoft.com/oldnewthing/20221215-00

Raymond Chen

Last time, we looked at how to create an IReference<T> in C++/WinRT. How did I know the

answer? By reading the source code and reverse-engineering what operations were valid and

what they produced.

Let’s look at the available constructors:

IReference(IReference const& other) = default;
IReference(IReference&& other) = default;

The copy and move constructors are implicitly declared, but I’m declaring them explicitly so

they show up on the list.

IReference(std::nullptr_t = nullptr) noexcept {}

This constructor serves as a default constructor, or you can construct from nullptr . Either

way creates an empty IReference . This constructor exists for all interface types, so it’s

nothing surprising.

IReference(void* ptr, take_ownership_from_abi_t) noexcept
 : Windows::Foundation::IInspectable(
 ptr, take_ownership_from_abi) {}

The take_ownership_from_abi tag type constructor creates an IReference that takes

ownership of an ABI pointer. This constructor also exists for all interface types, so nothing

special is happening yet.

IReference(T const& value)
 : IReference<T>(
 impl::reference_traits<T>::make(value))
{}

This is a conversion constructor which takes the underlying value type, calls the make

method from some class we haven’t yet studied, and uses that to initialize the IReference .

We’ll look at that class later.

The last constructor is

https://devblogs.microsoft.com/oldnewthing/20221215-00/?p=107595
https://devblogs.microsoft.com/oldnewthing/20221214-00/?p=107589

2/5

IReference(std::optional<T> const& value)
 : IReference(
 value ? IReference(value.value()) : nullptr)
{}

This is a conversion constructor that takes a std::optional<T> and produces the

corresponding std::IReference<T> . If the optional has a value, then we wrap it inside

an IReference using the value conversion constructor we saw above. Otherwise, we

initialize from nullptr , which means “no value”.

One thing to observe is that these last two constructors work with CTAD, so you can omit the

template specialization:

// compile deduces IReference<double> from double
double value = 42.0;
auto ref = IReference(value);

// compile deduces IReference<double> from std::optional<double>
std::optional<double> value(42.0);
auto ref = IReference(value);

The last member function is the std::optional conversion:

operator std::optional<T>() const
{
 if (*this)
 {
 return this->Value();
 }
 else
 {
 return std::nullopt;
 }
}

This converts an IReference<T> to a std::optional<T> by producing the value if the

wrapped pointer is non-null, or producing an empty optional if the wrapped pointer is

null.

All that’s left is studying the impl::reference_traits .

template <typename T>
struct reference_traits
{
 static auto make(T const& value)
 { return winrt::make<impl::reference<T>>(value); }
 using itf = Windows::Foundation::IReference<T>;
};

https://en.cppreference.com/w/cpp/language/class_template_argument_deduction

3/5

This is the unspecialized template traits class which make s an IReference<T> by creating

an instance of the private impl::reference class. We’ll make a note to come back to that

later.

What follows is a series of specializations for various fundamental types. For example,

template <>
struct reference_traits<uint8_t>
{
 static auto make(uint8_t value)
 { return Windows::Foundation::PropertyValue::CreateUInt8(value); }
 using itf = Windows::Foundation::IReference<uint8_t>;
};

To create an IReference<uint8_t> , the make() method uses the PropertyValue::

CreateUInt8() method. Repeat for the other special-purpose factory methods of

PropertyValue .

Okay, so now we’re left with that impl::reference class:

4/5

template <typename T>
struct reference :
 implements<reference<T>,
 Windows::Foundation::IReference<T>,
 Windows::Foundation::IPropertyValue>
{
 reference(T const& value) : m_value(value)
 { }

 T Value() const { return m_value; }

 Windows::Foundation::PropertyType Type() const noexcept
 {
 return Windows::Foundation::PropertyType::OtherType;
 }

 static constexpr bool IsNumericScalar() noexcept
 {
 return std::is_arithmetic_v<T> || std::is_enum_v<T>;
 }

 uint8_t GetUInt8() const
 {
 return to_scalar<uint8_t>();
 }

 〚 repeat for the other Get(IntegralType) methods 〛

 float GetSingle() { throw hresult_not_implemented(); }

 〚 repeat for the other Get(NonIntegralType) methods 〛

private:
 template <typename To>
 To to_scalar() const
 {
 if constexpr (IsNumericScalar()) {
 return static_cast<To>(m_value);
 } else {
 throw hresult_not_implemented();
 }
 }

 T m_value;
};

The impl::reference<T> type is used for custom enumerations and custom structures.

In both cases, the IReference<T>::Value() produces the wrapped value.

The remaining methods provide the implementation of IPropertyValue , which we noted

last time is one of the hidden requirements of IReference<T> .

5/5

If used for enumerations, Is Numeric Scalar() reports true , and all of the

Get(IntegralType) methods return the underlying integral value, cast to the requested

integral type. On the other hand, for structures, Is Numeric Scalar() reports false , and

all of the Get(IntegralType) methods throw hresult_not_implemented() .

For the floating point and other non-integral types, the methods always throw hresult_

not_implemented() .

It’s from reverse-engineering the C++/WinRT implementation of IReference that we

inferred the rules for its use. Being able to reverse-engineer the proper use of a library from

reading its source code is a key under-appreciated software developer skill. Until you can

infer the proper way of working with unfamiliar code, your career growth options will be

limited. You’ll be one of those people who can only do things they are taught, without the

ability to learn new things on their own.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

